Search results for "outflows"

showing 10 items of 25 documents

ESO-Hα 574 and Par-Lup 3-4 jets: Exploring the spectral, kinematical, and physical properties

2014

In this paper a comprehensive analysis of VLT / X-Shooter observations of two jet systems, namely ESO-H$\alpha$ 574 a K8 classical T Tauri star and Par-Lup 3-4 a very low mass (0.13~\Msun) M5 star, is presented. Both stars are known to have near-edge on accretion disks. A summary of these first X-shooter observations of jets was given in a 2011 letter. The new results outlined here include flux tables of identified emission lines, information on the morphology, kinematics and physical conditions of both jets and, updated estimates of $\dot{M}_{out}$ / $\dot{M}_{acc}$. Asymmetries in the \eso flow are investigated while the \para jet is much more symmetric. The density, temperature, and ther…

PhysicsAccretion (meteorology)Astrophysics::High Energy Astrophysical PhenomenaBalmer seriesAstronomy and AstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysicsformation ISM: jets and outflows accretion accretion disks line: identificationLuminosityStarssymbols.namesakeT Tauri starAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary SciencesymbolsAstrophysics::Solar and Stellar AstrophysicsH-alphaAstrophysics::Earth and Planetary AstrophysicsEmission spectrumjets and outflows accretion accretion disks line: identification [formation ISM]Astrophysics::Galaxy AstrophysicsLine (formation)
researchProduct

X-RAY EMISSION FROM PROTOSTELLAR JET HH 154: THE FIRST EVIDENCE OF A DIAMOND SHOCK?

2011

X-ray emission from about ten protostellar jets has been discovered and it appears as a feature common to the most energetic jets. Although X-ray emission seems to originate from shocks internal to jets, the mechanism forming these shocks remains controversial. One of the best studied X-ray jet is HH 154 that has been observed by Chandra over a time base of about 10 years. We analyze the Chandra observations of HH 154 by investigating the evolution of its X-ray source. We show that the X-ray emission consists of a bright stationary component and a faint elongated component. We interpret the observations by developing a hydrodynamic model describing a protostellar jet originating from a nozz…

PhysicsJet (fluid)Astrophysics::High Energy Astrophysical PhenomenaNozzleFOS: Physical sciencesAstronomy and AstrophysicsAstrophysicsThermal conductionjets and outflows X-rays: ISM [hydrodynamics Herbig-Haro objects ISM]LuminosityShock (mechanics)Starshydrodynamics Herbig-Haro objects ISM: jets and outflows X-rays: ISMAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary ScienceRadiative transferHerbig–Haro objectSolar and Stellar Astrophysics (astro-ph.SR)Astrophysics::Galaxy AstrophysicsThe Astrophysical Journal
researchProduct

The X-ray emission mechanism in the protostellar jet HH 154

2004

We study the mechanism causing the X-ray emission recently detected in protostellar jets, by performing a detailed modeling of the interaction between a supersonic jet originating from a young stellar object and the ambient medium, for various values of density contrast, ν, between the ambient density and the jet, and of Mach number, M; radiative losses and thermal conduction have been taken into account. Here we report a representative case which reproduces, without any ad hoc assumption, the characteristics of the X-ray emission recently observed in the protostellar jet HH 154. We find that the X-ray emission originates from a localized blob, consistent with observations, which moves with…

PhysicsJet (fluid)Proper motionAstrophysics::High Energy Astrophysical PhenomenaYoung stellar objectAstronomy and AstrophysicsAstrophysicsThermal conductionISM: Herbig-Haro objects ISM: individual objects: HH 154 ISM: jets and outflows X-rays: ISMSpace and Planetary ScienceRadiative transferSupersonic speedHerbig–Haro objectDensity contrastAstrophysics::Galaxy Astrophysics
researchProduct

X-rays from protostellar jets: emission from continuous flows

2006

Recently X-ray emission from protostellar jets has been detected with both XMM-Newton and Chandra satellites, but the physical mechanism which can give rise to this emission is still unclear. We performed an extensive exploration of a wide space of the main parameters influencing the jet/ambient interaction. Aims include: 1) to constrain the jet/ambient interaction regimes leading to the X-ray emission observed in Herbig-Haro objects in terms of the emission by a shock forming at the interaction front between a continuous supersonic jet and the surrounding medium; 2) to derive detailed predictions to be compared with optical and X-ray observations of protostellar jets; 3) to get insight int…

PhysicsJet (fluid)Proper motionShock (fluid dynamics)Astrophysics::High Energy Astrophysical PhenomenaAstrophysics (astro-ph)FOS: Physical sciencesAstronomy and AstrophysicsAstrophysicsAstrophysicsSpace (mathematics)Thermal conductionSettore FIS/05 - Astronomia E AstrofisicaSpace and Planetary ScienceRadiative transferHerbig-Haro objects ISM: jets and outflows X-rays: ISM [shock waves ISM]Astrophysics::Solar and Stellar AstrophysicsSupersonic speedCylindrical coordinate systemshock waves ISM: Herbig-Haro objects ISM: jets and outflows X-rays: ISMAstrophysics::Galaxy AstrophysicsAstronomy & Astrophysics
researchProduct

The diagnostic potential of Fe lines applied to protostellar jets

2013

We investigate the diagnostic capabilities of the iron lines for tracing the physical conditions of the shock-excited gas in jets driven by pre-main sequence stars. We have analyzed the 300-2500 nm X-shooter spectra of two jets driven by the pre-main sequence stars ESO-Halpha 574 and Par-Lup 3-4. Both spectra are very rich in [FeII] lines over the whole spectral range; in addition, lines from [FeIII] are detected in the ESO-H\alpha 574 spectrum. NLTE codes along with codes for the ionization equilibrium are used to derive the gas excitation conditions of electron temperature and density, and fractional ionization. The iron gas-phase abundance is provided by comparing the iron lines emissivi…

PhysicsJet (fluid)Range (particle radiation)ISM: individual objects: ESO-Hα 574 Par-Lup 3-4 ISM: jets and outflows ISM: lines and bands stars: pre-main sequenceFOS: Physical sciencesAstronomy and AstrophysicsAstrophysicsAstrophysics - Astrophysics of GalaxiesSpectral lineStarsindividual objects: ESO-Hα 574 Par-Lup 3-4 ISM: jets and outflows ISM: lines and bands stars: pre-main sequence [ISM]Astrophysics - Solar and Stellar AstrophysicsSpace and Planetary ScienceIonizationAstrophysics of Galaxies (astro-ph.GA)EmissivityElectron temperatureAtomic physicsExcitationSolar and Stellar Astrophysics (astro-ph.SR)
researchProduct

An X-shooter survey of star forming regions: Low-mass stars and sub-stellar objects

2011

We present preliminary results of our X-shooter survey in star forming regions. In this contribution we focus on sub-samples of young stellar and sub-stellar objects (YSOs) in the Lupus star forming region and in the TW Hya association. We show that the X-shooter spectra are suitable for conducting several parallel studies such as YSO + disk fundamental parameters, accretion and outflow activity in the very low-mass (VLM) and sub-stellar regimes, as well as magnetic activity in young VLM YSOs, and Li abundance determinations. The capabilities of X-shooter in terms of wide spectral coverage, resolution and limiting magnitudes, allow us to assess simultaneously the accretion/outflow, magnetic…

PhysicsYoung stellar objectBrown dwarfAstronomyAstronomy and AstrophysicsAstrophysicsAccretion (astrophysics)Spectral lineT Tauri starStarsaccretion accretion disks ISM: jets and outflows stars: formation stars: low-mass brown dwarfs stars: pre-main sequence T Tauri starsSpace and Planetary ScienceOutflowLow Massjets and outflows stars: formation stars: low-mass brown dwarfs stars: pre-main sequence T Tauri stars [accretion accretion disks ISM]
researchProduct

Laboratory disruption of scaled astrophysical outflows by a misaligned magnetic field

2021

The shaping of astrophysical outflows into bright, dense, and collimated jets due to magnetic pressure is here investigated using laboratory experiments. Here we look at the impact on jet collimation of a misalignment between the outflow, as it stems from the source, and the magnetic field. For small misalignments, a magnetic nozzle forms and redirects the outflow in a collimated jet. For growing misalignments, this nozzle becomes increasingly asymmetric, disrupting jet formation. Our results thus suggest outflow/magnetic field misalignment to be a plausible key process regulating jet collimation in a variety of objects from our Sun’s outflows to extragalatic jets. Furthermore, they provide…

ScienceAstrophysics::High Energy Astrophysical PhenomenaNozzleoutflows magnetohydrodynamics(MHD) shockwaves astrophysical jetsGeneral Physics and AstronomyFOS: Physical sciencesAstrophysics01 natural sciencesArticleGeneral Biochemistry Genetics and Molecular BiologyCollimated lightSettore FIS/05 - Astronomia E AstrofisicaAmbient field0103 physical sciencesAstrophysics::Solar and Stellar AstrophysicsMagnetic pressure010306 general physics010303 astronomy & astrophysicsSolar and Stellar Astrophysics (astro-ph.SR)Astrophysics::Galaxy AstrophysicsLaboratory astrophysicsPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Jet (fluid)MultidisciplinaryQLaser-produced plasmasGeneral ChemistryPhysics - Plasma PhysicsMagnetic fieldPlasma Physics (physics.plasm-ph)Astrophysics - Solar and Stellar AstrophysicsPhysics::Accelerator PhysicsOutflowHigh Energy Physics::ExperimentAstrophysics - High Energy Astrophysical Phenomena[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
researchProduct

X-ray emission mechanisms in protostellar jets

2005

Prompted by the recent detection of X-ray emission from Herbig-Haro objects, we studied the interaction between a supersonic jet originating from a young stellar object and the ambient medium; our aim is to investigate the mechanisms causing the X-ray emission. Our model takes into account the radiative losses from optically in plasmas and Spitzer's thermal conduction including saturation effects. We explored the parameter space defined by the density contrast between the ambient medium and the jet and by the Mach number, to infer the configurations which can give rise to X-ray emission. From the models, we derived the X-ray emission as it would be observed with Chandra/ACIS-I and XMM-Newto…

Settore FIS/05 - Astronomia E AstrofisicaHerbig-Haro objects – ISM: individual jets and outflows – X-rays: ISM [SM]SM: Herbig-Haro objects – ISM: individual objects (HH 154) – ISM: jets and outflows – X-rays: ISM
researchProduct

The nearest X-ray emitting protostellar jet (HH 154) observed with Hubble

2008

Context. The jet coming from the YSO binary L1551 IRS5 is the closest astrophysical jet known. It is therefore a unique laboratory for studies of outflow mechanisms and of the shocks occurring when expanding material hits the ambient medium as well as of how the related processes influence the star- (and planet-) forming process. Aims. The optical data are related to other data covering the spectrum from the optical band to X-rays with goal of understanding the energetics of low-mass star jets, in general, and of this jet in particular. We study the time evolution of the jet, by measuring the proper motions of knots as they progress outwards from the originating source. Methods. The nebulos…

Shock wavePhysicsJet (fluid)Proper motionShock (fluid dynamics)Astrophysics::High Energy Astrophysical PhenomenaYoung stellar objectAstronomyAstronomy and AstrophysicsContext (language use)AstrophysicsAstrophysical jetSpace and Planetary ScienceHerbig–Haro objectshock waves ISM: Herbig-Haro objects ISM: jets and outflows X-rays: ISMAstrophysics::Galaxy AstrophysicsAstronomy & Astrophysics
researchProduct

The kinematics of water masers in the stellar molecular outflow source, IRAS 19134+2131

2004

Using the Very Large Array (VLA) and the Very Long Baseline Array (VLBA), we have observed water maser emission in the proto-planetary nebula candidate IRAS 19134+2131, in which the water maser spectrum has two groups of emission features separated in radial velocity by ∼100 km s^−1. The blue-shifted and red-shifted clusters of maser features are clearly separated spatially by ∼150 mas, indicative of a fast collimated flow. However, not all of the maser features are aligned along the axis of the flow, as is seen in the similar high-velocity water maser source, W43A. Comparing the VLA and VLBA maps of the water maser source, we find 4 maser features that were active for 2 years. Using only V…

Stellar kinematicsAstrophysics::High Energy Astrophysical PhenomenaOutflowsAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysicsUNESCO::ASTRONOMÍA Y ASTROFÍSICAAGB and post-AGBlaw.inventionlawIndividual starsAstrophysics::Solar and Stellar AstrophysicsAsymptotic giant branchOH/IR starMaserMasers stars ; AGB and post-AGB ; Distances ; Kinematics Winds ; Outflows ; Individual stars ; IRAS 19134+2131Astrophysics::Galaxy AstrophysicsVery Long Baseline ArrayPhysicsNebulaKinematics WindsAstronomyIRAS 19134+2131Astronomy and AstrophysicsGalactic plane:ASTRONOMÍA Y ASTROFÍSICA::Cosmología y cosmogonia [UNESCO]Masers starsDistancesRadial velocitySpace and Planetary ScienceUNESCO::ASTRONOMÍA Y ASTROFÍSICA::Cosmología y cosmogonia:ASTRONOMÍA Y ASTROFÍSICA [UNESCO]Astronomy & Astrophysics
researchProduct