Search results for "overfitting"

showing 10 items of 22 documents

Classification of Heart Sounds Using Convolutional Neural Network

2020

Heart sounds play an important role in the diagnosis of cardiac conditions. Due to the low signal-to-noise ratio (SNR), it is problematic and time-consuming for experts to discriminate different kinds of heart sounds. Thus, objective classification of heart sounds is essential. In this study, we combined a conventional feature engineering method with deep learning algorithms to automatically classify normal and abnormal heart sounds. First, 497 features were extracted from eight domains. Then, we fed these features into the designed convolutional neural network (CNN), in which the fully connected layers that are usually used before the classification layer were replaced with a global averag…

Feature engineeringComputer science0206 medical engineeringconvolutional neural networkneuroverkot02 engineering and technologyOverfittingConvolutional neural networklcsh:Technologylcsh:Chemistry0202 electrical engineering electronic engineering information engineeringFeature (machine learning)General Materials ScienceSensitivity (control systems)sydäntauditInstrumentationlcsh:QH301-705.5Fluid Flow and Transfer Processesbusiness.industrylcsh:TProcess Chemistry and TechnologyDeep learning020208 electrical & electronic engineeringGeneral EngineeringPattern recognitiondiagnostiikkaMatthews correlation coefficientautomatic heart sound classification020601 biomedical engineeringlcsh:QC1-999Computer Science Applicationsfeature engineeringkoneoppiminenlcsh:Biology (General)lcsh:QD1-999lcsh:TA1-2040Heart soundsArtificial intelligencetiedonlouhintabusinesslcsh:Engineering (General). Civil engineering (General)lcsh:PhysicsApplied Sciences
researchProduct

Bivariate nonlinear prediction to quantify the strength of complex dynamical interactions in short-term cardiovascular variability.

2005

A nonlinear prediction method for investigating the dynamic interdependence between short length time series is presented. The method is a generalization to bivariate prediction of the univariate approach based on nearest neighbor local linear approximation. Given the input and output series x and y, the relationship between a pattern of samples of x and a synchronous sample of y was approximated with a linear polynomial whose coefficients were estimated from an equation system including the nearest neighbor patterns in x and the corresponding samples in y. To avoid overfitting and waste of data, the training and testing stages of the prediction were designed through a specific out-of-sampl…

Bivariate time seriePhysics::Medical PhysicsBiomedical EngineeringBlood PressureBivariate analysisOverfittingCross-validationk-nearest neighbors algorithmCardiovascular Physiological PhenomenaHealth Information ManagementHeart RateTilt-Table TestStatisticsApplied mathematicsHumansComputer SimulationPredictabilityHeart rate variabilityMathematicsHealth InformaticBaroreflex controlSystolic arterial pressure variabilityUnivariateModels CardiovascularNonlinear predictionComputer Science Applications1707 Computer Vision and Pattern RecognitionComputer Science ApplicationsNonlinear systemComputational Theory and MathematicsNonlinear DynamicsLinear approximationMedicalbiological engineeringcomputing
researchProduct

Feature selection for classification of music according to expressed emotion

2009

ominaisuudetfeature selectionoverfittingtunteetmusiikkimusical emotionswrapper selectioncross-indexingmusical featuresluokitus
researchProduct

Genetic programming through bi-objective genetic algorithms with a study of a simulated moving bed process involving multiple objectives

2013

A new bi-objective genetic programming (BioGP) technique has been developed for meta-modeling and applied in a chromatographic separation process using a simulated moving bed (SMB) process. The BioGP technique initially minimizes training error through a single objective optimization procedure and then a trade-off between complexity and accuracy is worked out through a genetic algorithm based bi-objective optimization strategy. A benefit of the BioGP approach is that an expert user or a decision maker (DM) can flexibly select the mathematical operations involved to construct a meta-model of desired complexity or accuracy. It is also designed to combat bloat - a perennial problem in genetic …

ta113Mathematical optimizationMeta-optimizationArtificial neural networkComputer scienceta111Evolutionary algorithmGenetic programmingOverfittingMulti-objective optimizationSimulation-based optimizationGenetic algorithmMetaheuristicSoftwareApplied Soft Computing
researchProduct

A comprehensive study of automatic program repair on the QuixBugs benchmark

2021

Abstract Automatic program repair papers tend to repeatedly use the same benchmarks. This poses a threat to the external validity of the findings of the program repair research community. In this paper, we perform an empirical study of automatic repair on a benchmark of bugs called QuixBugs, which has been little studied. In this paper, (1) We report on the characteristics of QuixBugs; (2) We study the effectiveness of 10 program repair tools on it; (3) We apply three patch correctness assessment techniques to comprehensively study the presence of overfitting patches in QuixBugs. Our key results are: (1) 16/40 buggy programs in QuixBugs can be repaired with at least a test suite adequate pa…

FOS: Computer and information sciencesCorrectnessComputer science02 engineering and technologyOverfittingMachine learningcomputer.software_genreMaintenance engineeringExternal validityComputer Science - Software Engineering020204 information systems0202 electrical engineering electronic engineering information engineeringTest suite[INFO]Computer Science [cs]computer.programming_languagebusiness.industry020207 software engineeringSoftware maintenancePython (programming language)Software Engineering (cs.SE)Software bugHardware and ArchitectureBenchmark (computing)Artificial intelligencebusinesscomputerSoftwareInformation Systems
researchProduct

Proposition of Convolutional Neural Network Based System for Skin Cancer Detection

2019

Skin cancer automated diagnosis tools play a vital role in timely screening, helping dermatologists focus on melanoma cases. Best arts on automated melanoma screening use deep learning-based approaches, especially deep convolutional neural networks (CNN) to improve performances. Because of the large number of parameters that could be involved during training in CNN many training samples are needed to avoid overfitting problem. Gabor filtering can efficiently extract spatial information including edges and textures, which may reduce the features extraction burden to CNN. In this paper, we proposed a Gabor Convolutional Network (GCN) model to improve the performance of automated diagnosis of …

business.industryComputer scienceDeep learningFeature extractionPattern recognition02 engineering and technologyFilter (signal processing)OverfittingConvolutional neural network030218 nuclear medicine & medical imaging03 medical and health sciences0302 clinical medicineGabor filter0202 electrical engineering electronic engineering information engineering020201 artificial intelligence & image processingArtificial intelligencebusinessFocus (optics)Spatial analysis2019 15th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS)
researchProduct

Automated Patch Assessment for Program Repair at Scale

2021

AbstractIn this paper, we do automatic correctness assessment for patches generated by program repair systems. We consider the human-written patch as ground truth oracle and randomly generate tests based on it, a technique proposed by Shamshiri et al., called Random testing with Ground Truth (RGT) in this paper. We build a curated dataset of 638 patches for Defects4J generated by 14 state-of-the-art repair systems, we evaluate automated patch assessment on this dataset. The results of this study are novel and significant: First, we improve the state of the art performance of automatic patch assessment with RGT by 190% by improving the oracle; Second, we show that RGT is reliable enough to h…

FOS: Computer and information sciencesGround truthCorrectnessComputer sciencebusiness.industryRandom testing020207 software engineering02 engineering and technologyOverfittingMachine learningcomputer.software_genreOracleSoftware Engineering (cs.SE)External validityComputer Science - Software Engineering020204 information systems0202 electrical engineering electronic engineering information engineering[INFO]Computer Science [cs]State (computer science)Artificial intelligencebusinessScale (map)computerSoftware
researchProduct

Assessment of susceptibility to earth-flow landslide using logistic regression and multivariate adaptive regression splines: A case of the Belice Riv…

2015

Abstract In this paper, terrain susceptibility to earth-flow occurrence was evaluated by using geographic information systems (GIS) and two statistical methods: Logistic regression (LR) and multivariate adaptive regression splines (MARS). LR has been already demonstrated to provide reliable predictions of earth-flow occurrence, whereas MARS, as far as we know, has never been used to generate earth-flow susceptibility models. The experiment was carried out in a basin of western Sicily (Italy), which extends for 51 km 2 and is severely affected by earth-flows. In total, we mapped 1376 earth-flows, covering an area of 4.59 km 2 . To explore the effect of pre-failure topography on earth-flow sp…

Multivariate adaptive regression splinesGeographic information systembusiness.industryGeographic Information Systems (GIS)Logistic regressionStatistical modelLandslideTerrainEarth-flowOverfittingLogistic regressionLandslide susceptibilityMultivariate adaptive regression splineDigital elevation modelbusinessCartographyReceiver operating characteristic curveGeologyEarth-Surface Processes
researchProduct

An analysis of the bias of variation operators of estimation of distribution programming

2018

Estimation of distribution programming (EDP) replaces standard GP variation operators with sampling from a learned probability model. To ensure a minimum amount of variation in a population, EDP adds random noise to the probabilities of random variables. This paper studies the bias of EDP's variation operator by performing random walks. The results indicate that the complexity of the EDP model is high since the model is overfitting the parent solutions when no additional noise is being used. Adding only a low amount of noise leads to a strong bias towards small trees. The bias gets stronger with an increased amount of noise. Our findings do not support the hypothesis that sampling drift is …

education.field_of_studyPopulationSampling (statistics)0102 computer and information sciences02 engineering and technologyOverfittingRandom walk01 natural sciencesNoiseEstimation of distribution algorithm010201 computation theory & mathematicsStatistics0202 electrical engineering electronic engineering information engineeringBhattacharyya distance020201 artificial intelligence & image processingeducationRandom variableMathematicsProceedings of the Genetic and Evolutionary Computation Conference
researchProduct

Generalizability and Simplicity as Criteria in Feature Selection: Application to Mood Classification in Music

2011

Classification of musical audio signals according to expressed mood or emotion has evident applications to content-based music retrieval in large databases. Wrapper selection is a dimension reduction method that has been proposed for improving classification performance. However, the technique is prone to lead to overfitting of the training data, which decreases the generalizability of the obtained results. We claim that previous attempts to apply wrapper selection in the field of music information retrieval (MIR) have led to disputable conclusions about the used methods due to inadequate analysis frameworks, indicative of overfitting, and biased results. This paper presents a framework bas…

ta113Acoustics and UltrasonicsComputer sciencebusiness.industryDimensionality reductionEmotion classificationFeature selectionOverfittingMachine learningcomputer.software_genreNaive Bayes classifierFeature (machine learning)Music information retrievalGeneralizability theoryArtificial intelligenceElectrical and Electronic EngineeringbusinesscomputerIEEE Transactions on Audio, Speech, and Language Processing
researchProduct