Search results for "parasemia plantaginis"
showing 3 items of 33 documents
Data from: Temporal relationship between genetic and warning signal variation in the aposematic wood tiger moth (Parasemia plantaginis)
2014
Many plants and animals advertise unpalatability through warning signals in the form of colour and shape. Variation in warning signals within local populations is not expected because they are subject to directional selection. However, mounting evidence of warning signal variation within local populations suggests that other selective forces may be acting. Moreover, different selective pressures may act on the individual components of a warning signal. At present, we have a limited understanding about how multiple selection processes operate simultaneously on warning signal components, and even less about their temporal and spatial dynamics. Here, we examined temporal variation of several w…
Data from: To quiver or to shiver: increased melanisation benefits thermoregulation, but reduces warning signal efficacy in the wood tiger moth
2013
Melanin production is often considered costly, yet beneficial for thermoregulation. Studies of variation in melanization and the opposing selective forces that underlie its variability contribute greatly to understanding natural selection. We investigated whether melanization benefits are traded off with predation risk to promote observed local and geographical variation in the warning signal of adult male wood tiger moths (Parasemia plantaginis). Warning signal variation is predicted to reduce survival in aposematic species. However, in P. plantaginis, male hindwings are either yellow or white in Europe, and show continuous variation in melanized markings that cover 20 to 90 per cent of th…
Predation on Multiple Trophic Levels Shapes the Evolution of Pathogen Virulence
2009
The pathogen virulence is traditionally thought to co-evolve as a result of reciprocal selection with its host organism. In natural communities, pathogens and hosts are typically embedded within a web of interactions with other species, which could affect indirectly the pathogen virulence and host immunity through trade-offs. Here we show that selection by predation can affect both pathogen virulence and host immune defence. Exposing opportunistic bacterial pathogen Serratia marcescens to predation by protozoan Tetrahymena thermophila decreased its virulence when measured as host moth Parasemia plantaginis survival. This was probably because the bacterial anti-predatory traits were traded o…