Search results for "parto"

showing 10 items of 608 documents

Nuclear-mass dependence of azimuthal beam-helicity and beam-charge asymmetries in deeply virtual Compton scattering

2009

The nuclear-mass dependence of azimuthal cross section asymmetries with respect to charge and longitudinal polarization of the lepton beam is studiedfor hard exclusive electroproduction of real photons. The observed beam-charge and beam-helicity asymmetries are attributed to the interference between the Bethe-Heitler and deeply virtual Compton scattering processes. For various nuclei, the asymmetries are extracted for both coherent and incoherent-enriched regions, which involve different (combinations of) generalized parton distributions. For both regions, the asymmetries are compared to those for a free proton, and no nuclear-mass dependence is found.

Nuclear and High Energy PhysicsParticle physicsPhotonNuclear TheoryHERAFOS: Physical sciencesIMPACT PARAMETER SPACEPartonGENERALIZED PARTON DISTRIBUTIONS; IMPACT PARAMETER SPACE; SPIN; HERA01 natural sciences7. Clean energyHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)GENERALIZED PARTON DISTRIBUTIONS0103 physical sciencesddc:530Nuclear Experiment010306 general physicsPhysicsElastic scattering010308 nuclear & particles physicsScatteringCompton scatteringHERASPINPhysics::Accelerator PhysicsHigh Energy Physics::ExperimentNucleonBeam (structure)
researchProduct

Prompt Photon Identification in the ALICE Experiment: The Isolation Cut Method

2007

Submitted for publication in NIM; The ALICE experiment at LHC will detect and identify prompt photons and light neutral mesons with the PHOS and EMCal detectors. Charged particles will be detected and identified by the central tracking system. In this paper, a method to identify prompt photons and to separate them from the background of hadrons and decay photons in PHOS with the help of isolation cuts is presented.

Nuclear and High Energy PhysicsParticle physicsPhotonelectromagnetic calorimetersMesonquark-gluon plasmaPhysics::Instrumentation and DetectorsHadronPhysics::OpticsParton25.75.Nq 24.10.Lx 25.75.-q 29.40.Vj[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciencesNuclear physics0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]PWO scintillators010306 general physicsNuclear ExperimentInstrumentationPhysicsLarge Hadron Collider010308 nuclear & particles physicsHigh-energy gamma raysCharged particleQuark–gluon plasmaHigh Energy Physics::ExperimentALICE (propellant)
researchProduct

Measuring the top energy asymmetry at the LHC: QCD and SMEFT interpretations

2020

The energy asymmetry in top-antitop-jet production is an observable of the top charge asymmetry designed for the LHC. We perform a realistic analysis in the boosted kinematic regime, including effects of the parton shower, hadronization and expected experimental uncertainties. Our predictions at particle level show that the energy asymmetry in the Standard Model can be measured with a significance of $3\sigma$ during Run 3, and with more than $5\sigma$ significance at the HL-LHC. Beyond the Standard Model the energy asymmetry is a sensitive probe of new physics with couplings to top quarks. In the framework of the Standard Model Effective Field Theory, we show that the sensitivity of the en…

Nuclear and High Energy PhysicsParticle physicsPhysics beyond the Standard Modelmedia_common.quotation_subjectFOS: Physical sciences01 natural sciences7. Clean energyAsymmetryStandard ModelHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)Hadron-Hadron scattering (experiments)0103 physical sciencesEffective field theorylcsh:Nuclear and particle physics. Atomic energy. Radioactivity010306 general physicsParton showermedia_commonParticle Physics - PhenomenologyPhysicsQuantum chromodynamicsLarge Hadron Collider010308 nuclear & particles physicshep-exHigh Energy Physics::Phenomenologyhep-phQCDHadronizationHigh Energy Physics - PhenomenologyTop physicsBeyond Standard Modellcsh:QC770-798High Energy Physics::ExperimentParticle Physics - Experiment
researchProduct

Top-quark production in proton–nucleus and nucleus–nucleus collisions at LHC energies and beyond

2015

Single and pair top-quark production in proton-lead (p-Pb) and lead-lead (Pb-Pb) collisions at the CERN Large Hadron Collider (LHC) and future circular collider (FCC) energies, are studied with next-to-leading-order perturbative QCD calculations including nuclear parton distribution functions. At the LHC, the pair-production cross sections amount to sigma(t-tbar) = 3.4 mub in Pb-Pb at sqrt(s) = 5.5 TeV, and sigma(t-tbar) = 60 nb in p-Pb at sqrt(s) = 8.8 TeV. At the FCC energies of sqrt(s) = 39 and 63 TeV, the same cross sections are factors of 90 and 55 times larger respectively. In the leptonic final-state t-tbar --> W+b W-bbar --> b bbar l+l- nu+nu-, after typical acceptance and eff…

Nuclear and High Energy PhysicsParticle physicsTop quarkNuclear TheoryProtontop-quark productionFOS: Physical sciencesParton114 Physical sciences7. Clean energyFuture Circular ColliderHigh Energy Physics - ExperimentNuclear Theory (nucl-th)Nuclear physicsHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)CHANNELPAIRNuclear Experiment (nucl-ex)LEPTONNuclear ExperimentNuclear ExperimentParticle Physics - PhenomenologyPhysicsPP COLLISIONSLarge Hadron Colliderta114ROOT-S=7 TEVp–Pb collisionsHigh Energy Physics::PhenomenologyPerturbative QCDBOSONATLASPRODUCTION CROSS-SECTIONFINAL-STATESlcsh:QC1-999GluonHigh Energy Physics - PhenomenologyPb–Pb collisionsJETSHigh Energy Physics::Experimentlcsh:PhysicsLeptonPhysics Letters B
researchProduct

Jet transverse fragmentation momentum from h–h correlations in pp and p–Pb collisions

2016

QCD color coherence phenomena, like angular ordering, can be studied by looking at jet fragmentation. As the jet is fragmenting, it is expected to go through two different phases. First, there is QCD branching that is calculable in perturbative QCD. Next, the produced partons hadronize in a non-perturbative way later in a hadronization process. The jet fragmentation can be studied using the method of two particle correlations. A useful observable is the jet transverse fragmentation momentum $j_{\mathrm{T}}$, which describes the angular width of the jet. In this contribution, a differential study will be presented in which separate $j_{\mathrm{T}}$ components for branching and hadronization …

Nuclear and High Energy PhysicsParticle physicsp–PbFOS: Physical sciencesmomentumPartonppnucl-ex01 natural sciencesHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)ALICEjetfragmentationbranching0103 physical sciencesNuclear Physics - ExperimentNuclear Experiment (nucl-ex)showeringNuclear Experiment010306 general physicsNuclear ExperimentQuantum chromodynamicsPhysicsta114hep-ex010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyPerturbative QCDObservableNuclear matterQCDHadronizationtransverseTransverse planeHigh Energy Physics::ExperimenthadronizationParticle Physics - ExperimentCoherence (physics)Nuclear and Particle Physics Proceedings
researchProduct

Pion-photon transition distribution amplitudes in the Nambu-Jona-Lasinio model

2007

12 pages, 6 figures.-- PACS nrs.: 13.60.-r; 11.10.St; 12.38.Lg; 24.10.Jv.-- ISI Article Identifier: 000251327200049.-- ArXiv pre-print available at: http://arxiv.org/abs/0707.3366

Nuclear and High Energy PhysicsPhotonBethe–Salpeter equationHigh Energy Physics::LatticeNuclear TheoryFOS: Physical sciences[PACS] Relativistic models of nucleiPartícules (Física nuclear)PionHigh Energy Physics - Phenomenology (hep-ph)Nambu–Jona-Lasinio modelBound stateVirtual Compton-scatteringCovariant transformation[PACS] Photon and charged-lepton interactions with hadrons[PACS] Bound and unstable statesMathematical physicsQuantum chromodynamicsPhysicsHigh Energy Physics::PhenomenologyGeneralized Parton distributions[PACS] Bound and unstable states; Bethe-Salpeter equations[PACS] Other nonperturbative calculations in QCDHigh Energy Physics - PhenomenologyAmplitudeQuantum electrodynamicsBethe-Salpeter equationsFísica nuclear
researchProduct

Electron Ion Collider: The Next QCD Frontier: Understanding the glue that binds us all

2016

International audience; This White Paper presents the science case of an Electron-Ion Collider (EIC), focused on the structure and interactions of gluon-dominated matter, with the intent to articulate it to the broader nuclear science community. It was commissioned by the managements of Brookhaven National Laboratory (BNL) and Thomas Jefferson National Accelerator Facility (JLab) with the objective of presenting a summary of scientific opportunities and goals of the EIC as a follow-up to the 2007 NSAC Long Range plan. This document is a culmination of a community-wide effort in nuclear science following a series of workshops on EIC physics over the past decades and, in particular, the focus…

Nuclear and High Energy Physicsdesign [accelerator]nucl-th[PHYS.NUCL]Physics [physics]/Nuclear Theory [nucl-th]parton: distribution functionnucleus: structure functionpolarized beamstructure function: spin[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]nucl-exstructure function [nucleon]Atomicproposed [colliding beams]design [detector]Particle and Plasma Physicsquantum chromodynamics[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]ddc:530Nuclearsaturation [gluon]colliding beams [electron nucleon]Hardware_REGISTER-TRANSFER-LEVELIMPLEMENTATIONdetector: designaccelerator: designhep-exnew physicsMolecularhep-phelectron nucleon: colliding beamsnucleon: structure functionstructure function [nucleus]Nuclear & Particles PhysicseRHICTheoryofComputation_MATHEMATICALLOGICANDFORMALLANGUAGESelectron nucleus: colliding beamscolliding beams: proposedTheoryofComputation_LOGICSANDMEANINGSOFPROGRAMS[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]gluon: saturationELICspin [structure function]Software_PROGRAMMINGLANGUAGEScolliding beams [electron nucleus]distribution function [parton]Hardware_LOGICDESIGNJefferson Lab
researchProduct

Prospects for a DVCS measurement at COMPASS

2010

The high energy polarised muon beam available at CERN with the option of using positive or negative muons with opposite polarisation gives COMPASS an excellent possibility to study generalised parton distributions via deeply virtual Compton scattering. In a first step we propose to use an unpolarised proton target to study the slope of the t dependence of the differential cross section as a function of xB j to observe a possible shrinkage of the nucleon with increasing xB j. Furthermore, the beam charge and spin difference will be measured over a wide kinematical range to determine the Compton form factor related to the GPD H. As a second step we consider to use a transversely polarised pro…

Nuclear physicsPhysicsLarge Hadron ColliderMuonProtonCompassForm factor (quantum field theory)Compton scatteringPartonNuclear ExperimentNucleonProceedings of XVIII International Workshop on Deep-Inelastic Scattering and Related Subjects — PoS(DIS 2010)
researchProduct

J/ψsuppression at forward rapidity in Au+Au collisions atsNN=200GeV

2011

Heavy quarkonia are observed to be suppressed in relativistic heavy-ion collisions relative to their production in p + p collisions scaled by the number of binary collisions. In order to determine if this suppression is related to color screening of these states in the produced medium, one needs to account for other nuclear modifications including those in cold nuclear matter. In this paper, we present new measurements from the PHENIX 2007 data set of J/psi yields at forward rapidity (1.2 < vertical bar y vertical bar < 2.2) in Au + Au collisions at root s(NN) = 200 GeV. The data confirm the earlier finding that the suppression of J/. at forward rapidity is stronger than at midrapidity, whi…

Nuclear physicsPhysicsNuclear and High Energy PhysicsParticle physicsQuark–gluon plasmaBinary numberPartonRapidityCharm (quantum number)Nuclear ExperimentBreakupNuclear matterGluonPhysical Review C
researchProduct

Suppression of away-side jet fragments with respect to the reaction plane in Au + Au collisions atsNN=200GeV

2011

Pair correlations between large transverse momentum neutral pion triggers (p(T) = 4-7 GeV/c) and charged hadron partners (p(T) = 3-7 GeV/c) in central (0%-20%) and midcentral (20%-60%) Au + Au collisions at root s(NN) = 200 GeV are presented as a function of trigger orientation with respect to the reaction plane. The particles are at larger momentum than where jet shape modifications have been observed, and the correlations are sensitive to the energy loss of partons traveling through hot densematter. An out-of-plane trigger particle produces only 26 +/- 20% of the away-side pairs that are observed opposite of an in-plane trigger particle for midcentral (20%-60%) collisions. In contrast, ne…

Nuclear reactionPhysicsNuclear and High Energy PhysicsJet (fluid)Meson010308 nuclear & particles physicsHadronPartonElementary particle01 natural sciencesNuclear physicsMomentumPion0103 physical sciencesHigh Energy Physics::ExperimentAtomic physicsNuclear Experiment010306 general physicsPhysical Review C
researchProduct