Search results for "parton"
showing 10 items of 552 documents
Heavy-flavour production in the SACOT-mT scheme
2019
The hadroproduction of heavy-flavoured mesons has recently attracted a growing interest e.g. within the people involved in global analysis of proton and nuclear parton distribution functions, saturation physics, and physics of cosmic rays. In particular, the D- and B-meson measurements of LHCb at forward direction are sensitive to gluon dynamics at small $x$ and are one of the few perturbative small-$x$ probes before the next generation deep-inelastic-scattering experiments. In this talk, we will concentrate on the collinear-factorization approach to inclusive D-meson production and describe a novel implementation --- SACOT-$m_{\rm T}$ --- of the general-mass variable flavour number scheme …
Two-loop divergences of scattering amplitudes with massive partons
2009
We complete the study of two-loop infrared singularities of scattering amplitudes with an arbitrary number of massive and massless partons in non-abelian gauge theories. To this end, we calculate the universal functions F_1 and f_2, which completely specify the structure of three-parton correlations in the soft anomalous-dimension matrix, at two-loop order in closed analytic form. Both functions are found to be suppressed like O(m^4/s^2) in the limit of small parton masses, in accordance with mass factorization theorems proposed in the literature. On the other hand, they are unsuppressed and diverge logarithmically near the threshold for pair production of two heavy particles. As an applica…
The present status of the EPS nuclear PDFs
2010
The recent global analyses of the nuclear parton distribution functions (nPDFs) lend support to the validity of the factorization theorem of QCD in high-energy processes involving bound nucleons. With a special attention on our latest global analysis EPS09, we review the recent developements in the domain of nuclear PDFs.
Determination of 55-155-155-1in second order QCD from hadronic Z decays
1992
Distributions of event shape variables obtained from 120600 hadronic Z decays measured with the DELPHI detector are compared to the predictions of QCD based event generators. Values of the strong coupling constant αs are derived as a function of the renormalization scale from a quantitative analysis of eight hadronic distributions. The final result, αs(MZ), is based on second order perturbation theory and uses two hadronization corrections, one computed with a parton shower model and the other with a QCD matrix element model. © 1992 Springer-Verlag.
Pion–nucleus Drell–Yan data as a novel constraint for nuclear PDFs
2017
We have studied the prospects of using the Drell-Yan dilepton process in pion-nucleus collisions as a novel input in the global analysis of nuclear parton distribution functions (nPDFs). In a NLO QCD framework, we find the measured nuclear cross-section ratios from the NA3, NA10 and E615 experiments to be largely insensitive to the pion parton distributions and also compatible with the EPS09 and nCTEQ15 nPDFs. These data sets can thus be, and in EPPS16 have been, included in global nPDF analyses without introducing significant new theoretical uncertainties or tension with the other data. In particular, we explore the constraining power of these data sets on the possible flavour asymmetry in…
Non local lagrangians(I): the pion
2005
We define a family of non local and chirally symmetric low energy lagrangians motivated by theoretical studies on Quantum Chromodynamics. These models lead to quark propagators with non trivial momentum dependencies. We define the formalism for two body bound states and apply it to the pion. We study the coupling of the photon and W bosons with special attention to the implementation of local gauge invariance. We calculate the pion decay constant recovering the Goldberger-Treiman and the Gell-Mann-Oakes-Renner relations. We recover a form of the axial current consistent with PCAC. Finally we study the pion form factor and we construct the operators involved in its parton distribution.
Determination of alpha_s at NLO*+NNLL from a global fit of the low-z parton-to-hadron fragmentation functions in e+e- and DIS collisions
2014
The QCD coupling alpha_s is determined from a combined analysis of experimental e+e- and e-p jet data confronted to theoretical predictions of the energy evolution of the parton-to-hadron fragmentation functions (FFs) moments --multiplicity, peak, width, skewness-- at low fractional hadron momentum z. The impact of approximate next-to-leading order (NLO*) corrections plus next-to-next-to-leading log (NNLL) resummations, compared to previous LO+NLL calculations, is discussed. A global fit of the full set of existing data, amounting to 360 FF moments at collision energies sqrt(s)~1--200 GeV, results in alpha_s(m_Z^2)=0.1189^{+0.0025}_{-0.0014} at the Z mass.
Nonforward parton distributions of the pion within an effective single instanton approximation
2000
We develop a relativistic quark model for pion structure, which incorporates the non-trivial structure of the vacuum of Quantum Chromodynamics as modelled by instantons. Pions are boundstates of quarks and the strong quark-pion vertex is determined from an instanton induced effective lagrangian. The interaction of the constituents of the pion with the external electromagnetic field is introduced in gauge invariant form. The parameters of the model, i.e., effective instanton radius and constituent quark masses, are obtained from the vacuum expectation values of the lowest dimensional quark and gluon operators and the low-energy observables of the pion. We apply the formalism to the calculati…
Measurement of the cross section for hard exclusive π0 muoproduction on the proton
2020
Physics letters / B B805, 135454 (2020). doi:10.1016/j.physletb.2020.135454
Diffractive dijet production and Wigner distributions from the color glass condensate
2019
Experimental processes that are sensitive to parton Wigner distributions provide a powerful tool to advance our understanding of proton structure. In this work, we compute gluon Wigner and Husimi distributions of protons within the Color Glass Condensate framework, which includes a spatially dependent McLerran-Venugopalan initial configuration and the explicit numerical solution of the JIMWLK equations. We determine the leading anisotropy of the Wigner and Husimi distributions as a function of the angle between impact parameter and transverse momentum. We study experimental signatures of these angular correlations at a proposed Electron Ion Collider by computing coherent diffractive dijet p…