Search results for "parton"
showing 10 items of 552 documents
On the Origin of Model Relations among Transverse-Momentum Dependent Parton Distributions
2011
Transverse-momentum dependent parton distributions (TMDs) are studied in the framework of quark models. In particular, quark-model relations among TMDs are reviewed, elucidating their physical origin in terms of the quark-spin structure in the nucleon. The formal aspects of the derivation of these relations are complemented with explicit examples, emphasizing how and to which extent the conditions which lead to relations among TMDs are implemented in different classes of quark models.
Parton distributions and lattice QCD calculations: A community white paper
2018
Progress in particle and nuclear physics 100, 107 - 160 (2018). doi:10.1016/j.ppnp.2018.01.007
NuTeV sin2θWanomaly and nuclear parton distributions revisited
2006
By studying the Paschos-Wolfenstein (PW) ratio of deep inelastic νFe and Fe scattering cross sections, we show that it should be possible to explain the NuTeV sin2θW anomaly with quite conventional physics, by introducing mutually different nuclear modifications for the valence-u and valence-d quark distributions of the protons in iron. Keeping the EKS98 nuclear modifications for uV+dV as a baseline, we find that some 20-30 % nuclear modifications to the uV and dV distributions account for the change induced in the PW ratio by the NuTeV-suggested increase Δsin2θW = 0.005. We show that introduction of such nuclear modifications in uV and dV individually, does not lead into contradiction with…
A search for new physics in dijet mass and angular distributions in pp collisions at [subscript √s=7] TeV measured with the ATLAS detector
2011
A search for new interactions and resonances produced in LHC proton–proton (pp) collisions at a centre-of-mass energy ps = 7 TeV was performed with the ATLAS detector. Using a dataset with an integrated luminosity of 36 pb−1, dijet mass and angular distributions were measured up to dijet masses of 3.5 TeV and were found to be in good agreement with Standard Model predictions. This analysis sets limits at 95% CL on various models for new physics: an excited quark is excluded for mass between 0.60 and 2.64 TeV, an axigluon hypothesis is excluded for axigluon masses between 0.60 and 2.10 TeV and quantum black holes are excluded in models with six extra space–time dimensions for quantum gravity…
Tevatron constraints on models of the Higgs boson with exotic spin and parity using decays to bottom-antibottom quark pairs.
2015
et al.
Parton distribution functions of heavy mesons on the light front
2019
The parton distribution functions (PDFs) of heavy mesons are evaluated from their light-front wave functions, which are obtained from a basis light-front quantization in the leading Fock sector representation. We consider the mass eigenstates from an effective Hamiltonian consisting of the confining potential adopted from light-front holography in the transverse direction, a longitudinal confinement, and a one-gluon exchange interaction with running coupling. We present the gluon and the sea quark PDFs which we generate dynamically from the QCD evolution of the valence quark distributions.
EPPS16: Nuclear parton distributions with LHC data
2017
We introduce a global analysis of collinearly factorized nuclear parton distribution functions (PDFs) including, for the first time, data constraints from LHC proton-lead collisions. In comparison to our previous analysis, EPS09, where data only from charged-lepton-nucleus deep inelastic scattering (DIS), Drell-Yan (DY) dilepton production in proton-nucleus collisions and inclusive pion production in deuteron-nucleus collisions were the input, we now increase the variety of data constraints to cover also neutrino-nucleus DIS and low-mass DY production in pion-nucleus collisions. The new LHC data significantly extend the kinematic reach of the data constraints. We now allow much more freedom…
First global next-to-leading order determination of diffractive parton distribution functions and their uncertainties within the {\tt xFitter} framew…
2018
We present {\tt GKG18-DPDFs}, a next-to-leading order (NLO) QCD analysis of diffractive parton distribution functions (diffractive PDFs) and their uncertainties. This is the first global set of diffractive PDFs determined within the {\tt xFitter} framework. This analysis is motivated by all available and most up-to-date data on inclusive diffractive deep inelastic scattering (diffractive DIS). Heavy quark contributions are considered within the framework of the Thorne-Roberts (TR) general mass variable flavor number scheme (GM-VFNS). We form a mutually consistent set of diffractive PDFs due to the inclusion of high-precision data from H1/ZEUS combined inclusive diffractive cross sections me…
Three-Dimensional parton structure of light nuclei
2017
Two promising directions beyond inclusive deep inelastic scattering experiments, aimed at unveiling the three dimensional structure of the bound nucleon, are reviewed, considering in particular the $^3$He nucleus. The 3D structure in coordinate space can be accessed through deep exclusive processes, whose non-perturbative part is encoded in generalized parton distributions (GPDs). In this way, the distribution of partons in the transverse plane can be obtained. As an example, coherent deeply virtual Compton scattering (DVCS) off $^3$He nuclei, important to access the neutron GPDs, will be discussed. In Impulse Approximation (IA), the sum of two GPDs of $^3$He, $H$ and $E$, at low momentum t…
Exclusive muoproduction on transversely polarised protons and deuterons
2012
The transverse target spin azimuthal asymmetry A(UT)(sin(phi-phi s)) in hard exclusive production of rho(0) mesons was measured at COMPASS by scattering 160 GeV/c muons off transversely polarised protons and deuterons. The measured asymmetry is sensitive to the nucleon helicity-flip generalised parton distributions E-q, which are related to the orbital angular momentum of quarks in the nucleon. The Q(2), x-B-j and p(T)(2) dependence of A(UT)(sin(phi-phi s)) is presented in a wide kinematic range: 1 (GeV/c)(2) < Q(2) < 10 (GeV/c)(2), 0.003 < xB(j) < 0.3 and 0.05 (GeV/c)(2) < p(T)(2) < 0.5 (GeV/c)(2) for protons or 0.10 (GeV/c)(2) < p(T)(2) < 0.5 (GeV/c)(2) for deuterons. Results for deuteron…