Search results for "patho"

showing 10 items of 10772 documents

Immunity and other defenses in pea aphids, Acyrthosiphon pisum

2010

Background Recent genomic analyses of arthropod defense mechanisms suggest conservation of key elements underlying responses to pathogens, parasites and stresses. At the center of pathogen-induced immune responses are signaling pathways triggered by the recognition of fungal, bacterial and viral signatures. These pathways result in the production of response molecules, such as antimicrobial peptides and lysozymes, which degrade or destroy invaders. Using the recently sequenced genome of the pea aphid (Acyrthosiphon pisum), we conducted the first extensive annotation of the immune and stress gene repertoire of a hemipterous insect, which is phylogenetically distantly related to previously ch…

0106 biological sciencesAntimicrobial Peptide; Suppression Subtraction Hybridization; Hemocyte; Alarm Pheromone; Parasitoid WaspGenome InsectHemocyteGenes Insect01 natural sciencesGenomearthropodeAlarm PheromoneParasitoid WaspGenetics0303 health sciencesAphidbiologyAntimicrobial Peptidefood and beveragesGENOMIQUEINSECTEpuceronPEA APHIDSparasiteHost-Pathogen InteractionsSuppression Subtraction Hybridizationagent pathogèneréponse immunitaireACYRTHOSIPHON PISUMAntimicrobial peptidesPEA APHIDS;ACYRTHOSIPHON PISUM;INSECTE;GENOMIQUE010603 evolutionary biology03 medical and health sciencesImmune systemBuchneraImmunityStress PhysiologicalBotanyAnimalsLife ScienceSymbiosisGene030304 developmental biologyResearchgèneGene Expression ProfilingfungiImmunitybiochemical phenomena metabolism and nutritionbiology.organism_classificationAcyrthosiphon pisumGene expression profilingAphidsbacteriaResearch highlight[SDV.EE.IEO]Life Sciences [q-bio]/Ecology environment/SymbiosisGenome Biology
researchProduct

Involvement of the glutamate receptor AtGLR3.3 in plant defense signaling and resistance toHyaloperonospora arabidopsidis

2013

Like their animal counterparts, plant glutamate receptor-like (GLR) homologs are intimately associated with Ca(2+) influx through plasma membrane and participate in various physiological processes. In pathogen-associated molecular patterns (PAMP)-/elicitor-mediated resistance, Ca(2+) fluxes are necessary for activating downstream signaling events related to plant defense. In this study, oligogalacturonides (OGs), which are endogenous elicitors derived from cell wall degradation, were used to investigate the role of Arabidopsis GLRs in defense signaling. Pharmacological investigations indicated that GLRs are partly involved in free cytosolic [Ca(2+)] ([Ca(2+)]cyt) variations, nitric oxide (N…

0106 biological sciencesArabidopsis thaliana[SDV]Life Sciences [q-bio]ArabidopsisOligosaccharidesPlant Science01 natural sciencesCALCIUM SIGNATURESchemistry.chemical_compoundGene Expression Regulation PlantSYSTEMIC ACQUIRED-RESISTANCEArabidopsisPlant defense against herbivoryArabidopsis thalianaPlant ImmunityGENE-EXPRESSIONCalcium signaling0303 health sciencesIMMUNE-RESPONSESTOBACCO CELLSfood and beveragesCYTOSOLIC CALCIUMElicitorOomycetesReceptors GlutamateBiochemistryHost-Pathogen Interactions[SDE]Environmental SciencesoligogalacturonidesSignal transductionSignal Transductionglutamate receptorHyaloperonospora arabidopsidisBiologyNitric Oxidecalcium signaling03 medical and health sciencesplant defenseGeneticsDNQX[SDV.BV]Life Sciences [q-bio]/Vegetal BiologyBOTRYTIS-CINEREA030304 developmental biologyHyaloperonospora arabidopsidisNITRIC-OXIDEArabidopsis ProteinsCell Biologybiology.organism_classificationSALICYLIC-ACIDchemistryPLASMA-MEMBRANEReactive Oxygen Species010606 plant biology & botanyThe Plant Journal
researchProduct

To Swim or Not to Swim: Potential Transmission of Balaenophilus manatorum (Copepoda: Harpacticoida) in Marine Turtles

2017

Species of Balaenophilus are the only harpacticoid copepods that exhibit a widespread, obligate association with vertebrates, i.e., B. unisetus with whales and B. manatorum with marine turtles and manatees. In the western Mediterranean, juveniles of the loggerhead sea turtle, Caretta caretta are the only available hosts for B. manatorum, which has been found occurring at high prevalence (>80%) on them. A key question is how these epibionts are transmitted from host to host. We investigated this issue based on experiments with live specimens of B. manatorum that were cultured with turtle skin. Specimens were obtained from head-started hatchlings of C. caretta from the western Mediterranean. …

0106 biological sciencesAvian clutch sizePhysiologyOvipositionlcsh:MedicinePathogenesisPathology and Laboratory Medicine01 natural sciencesLoggerhead sea turtlelaw.inventionlawReproductive PhysiologyMedicine and Health SciencesBiomechanicsTurtle (robot)lcsh:ScienceHarpacticoidaMusculoskeletal SystemMultidisciplinarybiologyOrganic CompoundsPlanktonTurtlesCrustaceansChemistryVertebratesHost-Pathogen InteractionsPhysical SciencesLegsAnatomyClutchesResearch ArticleArthropoda010603 evolutionary biologyCopepodsHost-Parasite InteractionsCopepodaSea WaterAnimalsSymbiosisHatchlingSwimmingEthanolBiological Locomotion010604 marine biology & hydrobiologylcsh:RLimbs (Anatomy)Organic ChemistryOrganismsChemical CompoundsBiology and Life SciencesReptilesbiology.organism_classificationInvertebratesFisheryBaleenTestudinesAlcoholsAmniotesEarth SciencesBiological dispersallcsh:QHydrologyhuman activitiesPLoS ONE
researchProduct

Insect Vectors (Hemiptera: Cixiidae) and Pathogens Associated with the Disease Syndrome “Basses Richesses” of Sugar Beet in France

2019

International audience; The syndrome “basses richesses” (SBR) is a disease of sugar beet in eastern France associated with two phloem-restricted, nonculturable plant pathogens: a stolbur phytoplasma and a γ-3 proteobacterium, here called SBR bacterium. Three planthopper (Hemiptera: Cixiidae) species were found to live near and within sugar beet fields in eastern France: Cixius wagneri, Hyalesthes obsoletus, and Pentastiridius leporinus. The role of these planthoppers in spreading the two pathogens to sugar beet was studied. Based on its abundance and high frequency of infection with the SBR bacterium, P. leporinus was considered to be the economic vector of SBR disease. C. wagneri, the prim…

0106 biological sciencesBASSES RICHESSES SYNDROME OF SUGAR BEETHomopteraEXPERIMENTAL TRANSMISSIONCIXIIDAEPlant Science01 natural sciencesHEMIPTERADETECTION03 medical and health sciencesPlanthopperBotanySugarPOLYMERASE CHAIN REACTION RESTRICTED FRAGMENT LENGH POLYMORPHISM030304 developmental biology2. Zero hunger0303 health sciencesbiologyPHLOEM LIMITED BACTERIAfungifood and beveragesLeporinusbiology.organism_classificationCixiidae[SDV.BV.PEP]Life Sciences [q-bio]/Vegetal Biology/Phytopathology and phytopharmacyHYALESTHES OBSOLETUSINSECTEGAMMA-3-PROTEOBACTERIAPhytoplasmaSTOLBUR PHYTOPLASMAVECTORSSugar beetCIXIUS WAGNERICHARACTERIZATIONAgronomy and Crop ScienceConvolvulusPENTASTIRIDIUS LEPORINUS010606 plant biology & botany
researchProduct

Assessing the role of megafauna in tropical forest ecosystems and biogeochemical cycles - the potential of vegetation models

2018

21 pages; International audience; Megafauna (terrestrial vertebrate herbivores > 5 kg) can have disproportionate direct and indirect effects on forest structure, function, and biogeochemical cycles. We reviewed the literature investigating these effects on tropical forest dynamics and biogeochemical cycles in relation to ecology, paleoecology, and vegetation modelling. We highlight the limitations of field‐based studies in evaluating the long‐term consequences of loss of megafauna. These limitations are due to inherent space‐time restrictions of field‐studies and a research focus on seed dispersal services provided by large animals. We further present evidence of a research gap concerning t…

0106 biological sciencesBiogeochemical cycle010504 meteorology & atmospheric sciencesDefaunationRainforest010603 evolutionary biology01 natural sciencesMegafaunacarbon cyclemedicineEcosystemEcology Evolution Behavior and Systematics0105 earth and related environmental sciences2. Zero hungerplant–animal interactionsEcologyBiogeochemistry15. Life on land[SDE.BE] Environmental Sciences/Biodiversity and EcologyDisturbance (ecology)13. Climate actionecosystem functioningEnvironmental sciencemedicine.symptom[SDE.BE]Environmental Sciences/Biodiversity and EcologyVegetation (pathology)
researchProduct

2018

0106 biological sciencesBiomass (ecology)010504 meteorology & atmospheric sciencesRenewable Energy Sustainability and the EnvironmentPublic Health Environmental and Occupational HealthAtmospheric sciences010603 evolutionary biology01 natural sciencesEl Niño Southern OscillationmedicineEnvironmental sciencemedicine.symptomVegetation (pathology)0105 earth and related environmental sciencesGeneral Environmental ScienceEnvironmental Research Letters
researchProduct

Calcium homeostasis in plant cell nuclei

2009

International audience; In plant cells, calcium-based signaling pathways are involved in a large array of biological processes, including cell division, polarity, growth, development and adaptation to changing biotic and abiotic environmental conditions. Free calcium changes are known to proceed in a nonstereotypical manner and produce a specific signature, which mirrors the nature, strength and frequency of a stimulus. The temporal aspects of calcium signatures are well documented, but their vectorial aspects also have a profound influence on biological output. Here, we will focus on the regulation of calcium homeostasis in the nucleus. We will discuss data and present hypotheses suggestin…

0106 biological sciencesCELL NUCLEUSHOMEOSTASISAUTONOMYCell divisionPhysiologyAequorinchemistry.chemical_elementPlant ScienceCalcium01 natural sciencesCALCIUM03 medical and health sciencesCytosolPlant CellsOrganellemedicineCalcium SignalingCELLULE VEGETALE030304 developmental biologyCalcium metabolism0303 health sciencesbiologyAEQUORINEAEQUORINCell biology[SDV.BV.PEP]Life Sciences [q-bio]/Vegetal Biology/Phytopathology and phytopharmacymedicine.anatomical_structurechemistryHOMEOSTASIEbiology.proteinSignal transductionNucleusHomeostasis010606 plant biology & botanySignal Transduction
researchProduct

A unified vegetation index for quantifying the terrestrial biosphere

2021

[EN] Empirical vegetation indices derived from spectral reflectance data are widely used in remote sensing of the biosphere, as they represent robust proxies for canopy structure, leaf pigment content, and, subsequently, plant photosynthetic potential. Here, we generalize the broad family of commonly used vegetation indices by exploiting all higher-order relations between the spectral channels involved. This results in a higher sensitivity to vegetation biophysical and physiological parameters. The presented nonlinear generalization of the celebrated normalized difference vegetation index (NDVI) consistently improves accuracy in monitoring key parameters, such as leaf area index, gross prim…

0106 biological sciencesCanopyEarth observation010504 meteorology & atmospheric sciencesEnvironmental StudiesComputerApplications_COMPUTERSINOTHERSYSTEMSAtmospheric sciences01 natural sciencesNormalized Difference Vegetation IndexGeneralLiterature_MISCELLANEOUSPhysics::GeophysicsComputerApplications_MISCELLANEOUSmedicineLeaf area indexResearch Articles0105 earth and related environmental sciencesComputingMethodologies_COMPUTERGRAPHICSMultidisciplinaryGlobal warmingBiosphereSciAdv r-articles15. Life on land13. Climate actionComputer ScienceEnvironmental scienceSatellitemedicine.symptomVegetation (pathology)010606 plant biology & botanyResearch Article
researchProduct

Stimulation of Defense Reactions in Medicago truncatula by Antagonistic Lipopeptides from Paenibacillus sp. Strain B2

2010

ABSTRACT With the aim of obtaining new strategies to control plant diseases, we investigated the ability of antagonistic lipopolypeptides (paenimyxin) from Paenibacillus sp. strain B2 to elicit hydrogen peroxide (H 2 O 2 ) production and several defense-related genes in the model legume Medicago truncatula . For this purpose, M. truncatula cell suspensions were used and a pathosystem between M. truncatula and Fusarium acuminatum was established. In M. truncatula cell cultures, the induction of H 2 O 2 reached a maximum 20 min after elicitation with paenimyxin, whereas concentrations higher than 20 μM inhibited H 2 O 2 induction and this was correlated with a lethal effect. In plant roots in…

0106 biological sciencesChalcone synthaseCell Culture TechniquesPhenylalanine ammonia-lyase01 natural sciencesApplied Microbiology and BiotechnologyPlant RootsMicrobiologyCell wall03 medical and health sciencesPathosystemPaenibacillusLipopeptidesPlant MicrobiologyFusariumGene Expression Regulation Plant030304 developmental biology[SDV.EE]Life Sciences [q-bio]/Ecology environment0303 health sciencesEcologybiologyfungiPANIBACILLUS SP. STRAIN B2food and beveragesHydrogen Peroxidebiology.organism_classificationMedicago truncatulaCoculture TechniquesInvertaseChitinasebiology.proteinMEDICAGO TRUNCATULAPaenibacillus010606 plant biology & botanyFood ScienceBiotechnology
researchProduct

Chlorophyll fluorescence emission spectrum inside a leaf

2008

International audience; Chlorophyll a fluorescence can be used as an early stress indicator. Fluorescence is also connected to photosynthesis so it can be proposed for global monitoring of vegetation status from a satellite platform. Nevertheless, the correct interpretation of fluorescence requires accurate physical models. The spectral shape of the leaf fluorescence free of any re-absorption effect plays a key role in the models and is difficult to measure. We present a vegetation fluorescence emission spectrum free of re-absorption based on a combination of measurements and modelling. The suggested spectrum takes into account the photosystem I and II spectra and their relative contributio…

0106 biological sciencesChlorophyllChlorophyll aSpectral shape analysisI REACTION CENTERSSPINACH THYLAKOID MEMBRANES[SDU.ASTR.EP]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP]PHOTOSYNTHETIC MEMBRANEPhotosystem I01 natural sciencesSpectral lineHIGHER-PLANTSPROTEIN COMPLEXES03 medical and health scienceschemistry.chemical_compoundmedicineEmission spectrumPhysical and Theoretical ChemistryChlorophyll fluorescenceLIGHT-HARVESTING COMPLEX030304 developmental biologyRemote sensing0303 health sciencesPhotosystem I Protein Complex[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph]Photosystem II Protein Complexfood and beveragesFluorescencePlant LeavesSpectrometry FluorescenceROOM-TEMPERATUREchemistryPHOTOSYSTEM-I[SDU]Sciences of the Universe [physics]Espectroscòpia de fluorescènciaARABIDOPSIS-THALIANAmedicine.symptomVegetation (pathology)ENERGY-TRANSFER010606 plant biology & botany
researchProduct