Search results for "pathogenesi"

showing 4 items of 764 documents

The interplay between the host microbiome and pathogenic viral infections

2021

The microorganisms associated with an organism, the microbiome, have a strong and wide impact in their host biology. In particular, the microbiome modulates both the host defense responses and immunity, thus influencing the fate of infections by pathogens. Indeed, this immune modulation and/or interaction with pathogenic viruses can be essential to define the outcome of viral infections. Understanding the interplay between the microbiome and pathogenic viruses opens future venues to fight viral infections and enhance the efficacy of antiviral therapies. An increasing number of researchers are focusing on microbiome-virus interactions, studying diverse combinations of microbial communities, …

virusesBiologyBacterial Physiological PhenomenaMicrobiologyViral infectionhost-microbiome interactionsInterferonImmunityVirologymedicineAnimalsHumansMicrobiomeOrganismhost-virus interactionsimmune modulationBacteriaHost (biology)pathogenesisMicrobiotainterferonImmune modulationQR1-502antiviral treatmentsVirus DiseasesImmunologyVirusesMicrobial InteractionsMinireviewmedicine.drugVirus Physiological Phenomena
researchProduct

Vaginal infection of mice with HSV type 2 variant ER−: A new animal model for human primary genital HSV type 2 infections

1992

Abstract Studying the pathogenesis of vaginal infections in mice with two variants of Herpes simplex virus type 2 (HSV-2) strain ER we observed that both variants ER+ and ER− caused severe vaginitis but only ER+ invaded the CNS leading to lethal neurological disease. In contrast, mice infected with ER− cleared the virus from the vagina and recovered from infection. ER+ and ER− expressed equal levels of thymidine kinase (TK) indicating a TK-independent difference in neurovirulence. Using the non-neurovirulent variant ER−, we were able to investigate humoral immune responses late after infection. Vaginal infection with ER− suppressed serum antibody formation after a secondary systemic HSV-1 i…

virusesBiologyVirus Replicationmedicine.disease_causeModels BiologicalVirusHerpesviridaePathogenesisMiceImmune systemVirologymedicineAnimalsSimplexvirusVaginitisMice Inbred BALB CHerpes GenitalisVirulencemedicine.diseaseVirologyMice Inbred C57BLDisease Models AnimalHerpes simplex virusmedicine.anatomical_structureAntibody FormationVaginaVaginabiology.proteinFemaleAntibodyJournal of Virological Methods
researchProduct

Human Papillomavirus Type 16 E7 Peptide-Directed CD8+ T Cells from Patients with Cervical Cancer Are Cross-Reactive with the Coronavirus NS2 Protein

2003

ABSTRACTHuman papillomavirus type 16 (HPV16) E6 and E7 oncoproteins are required for cellular transformation and represent candidate targets for HPV-specific and major histocompatibility complex class I-restricted CD8+-T-cell responses in patients with cervical cancer. Recent evidence suggests that cross-reactivity represents the inherent nature of the T-cell repertoire. We identified HLA-A2 binding HPV16 E7 variant peptides from human, bacterial, or viral origin which are able to drive CD8+-T-cell responses directed against wild-type HPV16 E7 amino acid 11 to 19/20 (E711-19/20) epitope YMLDLQPET(T) in vitro. CD8+T cells reacting to the HLA-A2-presented peptide from HPV16 E711-19(20)recogni…

virusesPapillomavirus E7 ProteinsImmunologyMolecular Sequence DataPriming (immunology)Epitopes T-LymphocyteUterine Cervical NeoplasmsCD8-Positive T-LymphocytesCross ReactionsViral Nonstructural Proteinsmedicine.disease_causeMajor histocompatibility complexLymphocyte ActivationMicrobiologyEpitopeImmune systemVirologyHLA-A2 AntigenmedicineCytotoxic T cellHumansHuman coronavirus OC43Amino Acid SequencePapillomaviridaeCoronavirusbiologyPapillomavirus Infectionsvirus diseasesOncogene Proteins Viralbiology.organism_classificationVirologyMolecular biologyCoronavirusTumor Virus InfectionsInsect Sciencebiology.proteinPathogenesis and ImmunityFemalePeptidesCD8Journal of Virology
researchProduct

Clathrin- and Caveolin-Independent Entry of Human Papillomavirus Type 16—Involvement of Tetraspanin-Enriched Microdomains (TEMs)

2008

BACKGROUND: Infectious entry of human papillomaviruses into their host cells is an important step in the viral life cycle. For cell binding these viruses use proteoglycans as initial attachment sites. Subsequent transfer to a secondary receptor molecule seems to be involved in virus uptake. Depending on the papillomavirus subtype, it has been reported that entry occurs by clathrin- or caveolin-mediated mechanisms. Regarding human papillomavirus type 16 (HPV16), the primary etiologic agent for development of cervical cancer, clathrin-mediated endocytosis was described as infectious entry pathway. METHODOLOGY/PRINCIPAL FINDINGS: Using immunofluorescence and infection studies we show in contra…

viruseslcsh:MedicinePlatelet Membrane GlycoproteinsTetraspanin 24CaveolaeKidneyEndocytosisClathrinVirusCell LineMembrane MicrodomainsViral life cycleTetraspaninAntigens CDCaveolaeInfectious Diseases/Viral InfectionsCaveolinInfectious Diseases/Sexually Transmitted DiseasesHumanslcsh:ScienceHuman papillomavirus 16MultidisciplinarybiologyTetraspanin 30lcsh:RVirionMembrane Proteinsvirus diseasesCell BiologyVirus InternalizationVirology/Host Invasion and Cell EntryVirologyClathrinEndocytosisCell biologyCell culturebiology.proteinFemalelcsh:QMicrobiology/Cellular Microbiology and PathogenesisHeLa CellsResearch ArticlePLoS ONE
researchProduct