Search results for "permuta"

showing 10 items of 171 documents

Some subgroup embeddings in finite groups: A mini review

2015

[EN] In this survey paper several subgroup embedding properties related to some types of permutability are introduced and studied. ª 2014 Production and hosting by Elsevier B.V. on behalf of Cairo University

Computer scienceMini Reviewmacromolecular substancesS-permutabilityMini reviewMathematics::Group TheoryComputingMethodologies_SYMBOLICANDALGEBRAICMANIPULATIONPermutabilityPrimitive subgroupAlgebra over a fieldFinite grouplcsh:Science (General)GeneralFinite grouplcsh:R5-920MultidisciplinaryMathematics::Combinatoricsmusculoskeletal neural and ocular physiologyAlgebranervous systemEmbeddingQuasipermutable subgrouplcsh:Medicine (General)MATEMATICA APLICADAAlgorithmSemipermutabilityMathematicsofComputing_DISCRETEMATHEMATICSlcsh:Q1-390Journal of Advanced Research
researchProduct

Longest Motifs with a Functionally Equivalent Central Block

2004

International audience; This paper presents a generalization of the notion of longest repeats with a block of k don't care symbols introduced by [Crochemore et al., LATIN 2004] (for k fixed) to longest motifs composed of three parts: a first and last that parameterize match (that is, match via some symbol renaming, initially unknown), and a functionally equivalent central block. Such three-part motifs are called longest block motifs. Different types of functional equivalence, and thus of matching criteria for the central block are considered, which include as a subcase the one treated in [Crochemore et al., LATIN 2004] and extend to the case of regular expressions with no Kleene closure or …

Discrete mathematics0303 health sciences[INFO.INFO-DS]Computer Science [cs]/Data Structures and Algorithms [cs.DS]Block (permutation group theory)0102 computer and information sciences01 natural sciencesCombinatoricsKleene algebra03 medical and health sciencesClosure (mathematics)010201 computation theory & mathematicsAlgorithmicsKleene starRegular expressionTime complexity030304 developmental biologyMathematicsComplement (set theory)
researchProduct

On fixed points of the Burrows-Wheeler transform

2017

The Burrows-Wheeler Transform is a well known transformation widely used in Data Compression: important competitive compression software, such as Bzip (cf. [1]) and Szip (cf. [2]) and some indexing software, like the FM-index (cf. [3]), are deeply based on the Burrows Wheeler Transform. The main advantage of using BWT for data compression consists in its feature of "clustering" together equal characters. In this paper we show the existence of fixed points of BWT, i.e., words on which BWT has no effect. We show a characterization of the permutations associated to BWT of fixed points and we give the explicit form of fixed points on a binary ordered alphabet a, b having at most four b's and th…

Discrete mathematicsAlgebra and Number TheoryBurrows–Wheeler transformSettore INF/01 - InformaticaPermutationPermutations0102 computer and information sciences02 engineering and technologyInformation SystemFixed point01 natural sciencesTheoretical Computer ScienceComputational Theory and Mathematics010201 computation theory & mathematicsFixed PointFixed Points0202 electrical engineering electronic engineering information engineeringBurrows-Wheeler Transform; Fixed Points; Permutations; Theoretical Computer Science; Algebra and Number Theory; Information Systems; Computational Theory and Mathematics020201 artificial intelligence & image processingBurrows-Wheeler TransformInformation SystemsMathematics
researchProduct

Divisible designs from semifield planes

2002

AbstractWe give a general method to construct divisible designs from semifield planes and we use this technique to construct some divisible designs. In particular, we give the case of twisted field plane as an example.

Discrete mathematicsAutomorphism groupGeneral methodDivisible designsField (mathematics)Division (mathematics)Permutation groupTranslation (geometry)Plane (Unicode)Theoretical Computer ScienceR-permutation groupsCombinatoricsDiscrete Mathematics and CombinatoricsAutomorphism groupsTranslation planesDivision algebrasSemifieldMathematicsDiscrete Mathematics
researchProduct

A bijection between words and multisets of necklaces

2012

Two of the present authors have given in 1993 a bijection Phi between words on a totally ordered alphabet and multisets of primitive necklaces. At the same time and independently, Burrows and Wheeler gave a data compression algorithm which turns out to be a particular case of the inverse of Phi. In the present article, we show that if one replaces in Phi the standard permutation of a word by the co-standard one (reading the word from right to left), then the inverse bijection is computed using the alternate lexicographic order (which is the order of real numbers given by continued fractions) on necklaces, instead of the lexicographic order as for Phi(-1). The image of the new bijection, ins…

Discrete mathematicsBurrows and Wheeler TransformMathematics::CombinatoricsSettore INF/01 - InformaticaFree Lie algebraLie superalgebrastandard permutationLexicographical orderTheoretical Computer ScienceImage (mathematics)CombinatoricsSet (abstract data type)PermutationComputational Theory and MathematicsBijectionDiscrete Mathematics and CombinatoricsGeometry and TopologyComputer Science::Formal Languages and Automata TheoryWord (group theory)MathematicsReal number
researchProduct

Restricted 123-avoiding Baxter permutations and the Padovan numbers

2007

AbstractBaxter studied a particular class of permutations by considering fixed points of the composite of commuting functions. This class is called Baxter permutations. In this paper we investigate the number of 123-avoiding Baxter permutations of length n that also avoid (or contain a prescribed number of occurrences of) another certain pattern of length k. In several interesting cases the generating function depends only on k and is expressed via the generating function for the Padovan numbers.

Discrete mathematicsClass (set theory)Golomb–Dickman constantStirling numbers of the first kindApplied MathematicsPadovan numbersGenerating functionFixed pointCombinatoricsPermutationDiscrete Mathematics and CombinatoricsTree (set theory)Generating treesBaxter permutationsForbidden subsequencesMathematicsDiscrete Applied Mathematics
researchProduct

Lehmer code transforms and Mahonian statistics on permutations

2012

Abstract In 2000 Babson and Steingrimsson introduced the notion of vincular patterns in permutations. They show that essentially all well-known Mahonian permutation statistics can be written as combinations of such patterns. Also, they proved and conjectured that other combinations of vincular patterns are still Mahonian. These conjectures were proved later: by Foata and Zeilberger in 2001, and by Foata and Randrianarivony in 2006. In this paper we give an alternative proof of some of these results. Our approach is based on permutation codes which, like the Lehmer code, map bijectively permutations onto subexcedant sequences. More precisely, we give several code transforms (i.e., bijections…

Discrete mathematicsCode (set theory)Mathematics::CombinatoricsValue (computer science)020206 networking & telecommunications0102 computer and information sciences02 engineering and technologyMathematical proof01 natural sciencesPermutation codeTheoretical Computer ScienceCombinatoricsPermutation010201 computation theory & mathematicsLehmer codeStatistics[MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO]FOS: Mathematics0202 electrical engineering electronic engineering information engineeringMathematics - CombinatoricsDiscrete Mathematics and CombinatoricsCombinatorics (math.CO)Bijection injection and surjectionComputingMilieux_MISCELLANEOUSMathematics
researchProduct

A Classification of all Symmetric Block Designs of Order Nine with an Automorphism of Order Six

2006

We complete the classification of all symmetric designs of order nine admitting an automorphism of order six. As a matter of fact, the classification for the parameters (35,17,8), (56,11,2), and (91,10,1) had already been done, and in this paper we present the results for the parameters (36,15,6), (40,13,4), and (45,12,3). We also provide information about the order and the structure of the full automorphism groups of the constructed designs. © 2005 Wiley Periodicals, Inc. J Combin Designs 14: 301–312, 2006

Discrete mathematicsCombinatoricsAutomorphism groupBlock (permutation group theory)Structure (category theory)Discrete Mathematics and CombinatoricsOuter automorphism groupOrder (group theory)symmetric design; automorphism groupSymmetric designAutomorphismMathematics
researchProduct

A matrix of combinatorial numbers related to the symmetric groups

1979

For permutation groups G of finite degree we define numbers t"B(G)=|G|^-^[email protected]?"R"@?"[email protected]?"1(1a"1(g))^b^"^i, where B=(b"1,...,b"1) is a tuple of non-negative integers and a"1(g) denotes the number of i cycles in the element g. We show that t"B(G) is the number of orbits of G, acting on a set @D"B(G) of tuples of matrices. In the case G=S"n we get a natural interpretation for combinatorial numbers connected with the Stiring numbers of the second kind.

Discrete mathematicsCombinatoricsMatrix (mathematics)Degree (graph theory)Symmetric groupDiscrete Mathematics and CombinatoricsFunction compositionPermutation groupTupleElement (category theory)Theoretical Computer ScienceInterpretation (model theory)MathematicsDiscrete Mathematics
researchProduct

Symmetric units and group identities

1998

In this paper we study rings R with an involution whose symmetric units satisfy a group identity. An important example is given by FG, the group algebra of a group G over a field F; in fact FG has a natural involution induced by setting g?g −1 for all group elements g∈G. In case of group algebras if F is infinite, charF≠ 2 and G is a torsion group we give a characterization by proving the following: the symmetric units satisfy a group identity if and only if either the group of units satisfies a group identity (and a characterization is known in this case) or char F=p >0 and 1) FG satisfies a polynomial identity, 2) the p-elements of G form a (normal) subgroup P of G and G/P is a Hamiltonia…

Discrete mathematicsCombinatoricsSubgroupG-moduleMetabelian groupGeneral MathematicsQuaternion groupPerfect groupAlternating groupIdentity componentPermutation groupMathematicsmanuscripta mathematica
researchProduct