Search results for "permutability"

showing 4 items of 14 documents

On a class of p-soluble groups

2005

[EN] Let p be a prime. The class of all p-soluble groups G such that every p-chief factor of G is cyclic and all p-chief factors of G are G-isomorphic is studied in this paper. Some results on T-, PT-, and PST -groups are also obtained.

Pure mathematicsClass (set theory)Finite groupAlgebra and Number TheoryApplied MathematicsGrups Teoria dePrime (order theory)CombinatoricsPermutabilitySubnormalityÀlgebraAlgebra over a fieldFinite groupMATEMATICA APLICADAMathematics
researchProduct

A generalization to Sylow permutability of pronormal subgroups of finite groups

2020

[EN] In this note, we present a new subgroup embedding property that can be considered as an analogue of pronormality in the scope of permutability and Sylow permutability in finite groups. We prove that finite PST-groups, or groups in which Sylow permutability is a transitive relation, can be characterized in terms of this property, in a similar way as T-groups, or groups in which normality is transitive, can be characterized in terms of pronormality.

Pure mathematicsGeneralizationPropermutabilityFinite groups; subgroup embedding property; permutability; pro-S-permutability; propermutability01 natural sciencesMathematics::Group TheoryPermutabilitypermutabilityFinite group0101 mathematicsPro-S-permutabilityComputer Science::DatabasesMathematicsFinite groupAlgebra and Number Theorysubgroup embedding propertySubgroup embedding propertyApplied Mathematics010102 general mathematicsSylow theoremspro-S-permutabilityFinite groups010101 applied mathematicsEmbeddingpropermutabilityMATEMATICA APLICADAMatemàticaJournal of Algebra and Its Applications
researchProduct

Subgroup S-commutativity degrees of finite groups

2012

Subgroups latticeSettore MAT/02 - Algebrapermutability degreemodular group
researchProduct

On some classes of supersoluble groups

2007

[EN] Finite groups G for which for every subgroup H and for all primes q dividing the index |G:H| there exists a subgroup K of G such that H is contained in K and |K:H|=q are called Y-groups. Groups in which subnormal subgroups permute with all Sylow subgroups are called PST-groups. In this paper a local version of the Y-property leading to a local characterisation of Y-groups, from which the classical characterisation emerges, is introduced. The relationship between PST-groups and Y-groups is also analysed.

p-groupNormal subgroupDiscrete mathematicsComplement (group theory)Lagrange theoremAlgebra and Number TheorySylow theoremsGrups Teoria deSylow subgroupFitting subgroupCombinatoricsSubgroupLocally finite groupPermutabilityÀlgebraIndex of a subgroupFinite groupMATEMATICA APLICADAMathematicsJournal of Algebra
researchProduct