Search results for "perturbation theory"
showing 10 items of 584 documents
Compton scattering by a pion and off-shell effects
1994
We consider Compton scattering by a pion in the framework of chiral perturbation theory. We investigate off--shell effects in the s-- and u--channel pole diagrams. For that purpose we perform a field transformation which, in comparison with the standard Gasser and Leutwyler Lagrangian, generates additional terms at order $p^4$ proportional to the lowest--order equation of motion. As a result of the equivalence theorem the two Lagrangians predict the same Compton scattering S--matrix even though they generate different off--shell form factors. We conclude that off--shell effects are not only model--dependent but also representation--dependent.
πNscattering in relativistic baryon chiral perturbation theory reexamined
2011
We have analyzed pion-nucleon scattering using the manifestly relativistic covariant framework of infrared regularization up to $\mathcal{O}({q}^{3})$ in the chiral expansion, where $q$ is a generic small momentum. We describe the low-energy phase shifts with a similar quality as previously achieved with heavy baryon chiral perturbation theory, $\sqrt{s}\ensuremath{\lesssim}1.14$ GeV. New values are provided for the $\mathcal{O}({q}^{2})$ and $\mathcal{O}({q}^{3})$ low-energy constants, which are compared with previous determinations. This is also the case for the scattering lengths and volumes. Finally, we have unitarized the previous amplitudes and as a result the energy range where data …
Measurements of the Generalized Electric and Magnetic Polarizabilities of the Proton at LowQ2Using the Virtual-Compton-Scattering Reaction
2006
Experimental details of a virtual Compton scattering (VCS) experiment performed on the proton at the MIT-Bates out-of-plane scattering facility are presented. The VCS response functions ${P}_{LL}\ensuremath{-}{P}_{TT}/\phantom{{P}_{TT}\ensuremath{\varepsilon}}\ensuremath{\varepsilon}$ and ${P}_{LT}$ have been measured at ${Q}^{2}=0.057\phantom{\rule{0.28em}{0ex}}{\mathrm{GeV}}^{2}/{c}^{2}$. The generalized electric and magnetic polarizabilities, $\ensuremath{\alpha}({Q}^{2})$ and $\ensuremath{\beta}({Q}^{2})$, and the mean-square electric polarizability radius$\ensuremath{\langle}{r}_{\ensuremath{\alpha}}^{2}\ensuremath{\rangle}$ are obtained from a dispersion analysis of the data. The resu…
Ultra-nonlocality in density functional theory for photo-emission spectroscopy.
2014
We derive an exact expression for the photo-current of photo-emission spectroscopy using time-dependent current density functional theory (TDCDFT). This expression is given as an integral over the Kohn-Sham spectral function renormalized by effective potentials that depend on the exchange-correlation kernel of current density functional theory. We analyze in detail the physical content of this expression by making a connection between the density-functional expression and the diagrammatic expansion of the photo-current within many-body perturbation theory. We further demonstrate that the density functional expression does not provide us with information on the kinetic energy distribution of…
Nuclear magnetic shielding constants in the CC2 model
1997
Abstract Test calculations of nuclear magnetic shielding constants in the CC2 model are performed using the gauge-including atomic orbital approach. Absolute shielding constants are reported for reprsentative first-row hydrides, a few multiply bonded molecules and some challenging cases. The performance of CC2 is analyzed by comparison with experimental data and results from calculations employing more sophisticated treatments of electron correlation. In most cases, CC2 shieldings and chemical shifts are close to those obtained at second-order perturbation theory, despite the fact that the CC2 model includes an approximate treatment of orbital relaxation effects at the correlated level.
An ab initio study of the electron affinity of O2
1993
Abstract Coupled pair functional, multiconfigurational second-order perturbation theory, and multireference CI methods have been applied in a calculation of the electron affinity of the oxygen molecule. The convergence of the theoretical result has been checked with respect to a systematic expansion of the one-electron basis and the multireference CI wavefunction. The best calculated value, 0.39 eV, is 0.06 eV smaller than the recent experimental value 0.45±0.01 eV.
Ab Initio Methods for Excited States
2005
This chapter focuses mainly on the performance of ab initio methods for the description of spectroscopic molecular properties of compounds. Most of the quantum-chemical methods developed up to date are based on the concept of the one-electron wave function. The electronic states of a system with N electrons are described by a double expansion. Molecular orbitals (MOs) are one-electron wave functions expressed as linear combinations of a known one-electron basis set (K) and the N electron wave function is formulated in a many-electron basis set formed by determinants (or linear combination of them to form spin-adapted wave functions), built as normalized antisymmetric products of MOs. Accord…
Quantitative prediction of gas-phase F19 nuclear magnetic shielding constants
2008
Benchmark calculations of (19)F nuclear magnetic shielding constants are presented for a set of 28 molecules. Near-quantitative accuracy (ca. 2 ppm deviation from experiment) is achieved if (1) electron correlation is adequately treated by employing the coupled-cluster singles and doubles (CCSD) model augmented by a perturbative correction for triple excitations [CCSD(T)], (2) large (uncontracted) basis sets are used, (3) gauge-including atomic orbitals are used to ensure gauge-origin independence, (4) calculations are performed at accurate equilibrium geometries [obtained from CCSD(T)/cc-pVTZ calculations correlating all electrons], and (5) vibrational averaging and temperature corrections…
Perturbative treatment of triple excitations in internally contracted multireference coupled cluster theory.
2012
Internally contracted multireference coupled cluster (ic-MRCC) methods with perturbative treatment of triple excitations are formulated based on Dyall's definition of a zeroth-order Hamiltonian. The iterative models ic-MRCCSDT-1, ic-MRCC3, and their variants ic-MRCCSD(T), ic-MRCC(3) which determine the energy correction from triples by a non-iterative step are consistent in the single-reference limit with CCSDT-1a, CC3, CCSD(T), and CC(3), respectively. Numerical tests on the potential energy surfaces of BeH(2), H(2)O, and N(2) as well as on the structure and harmonic vibrational frequencies of the ozone molecule show that these methods account very well for higher order correlation effects…
A two-scale approach to electron correlation in multiconfigurational perturbation theory.
2014
We present a new approach for the calculation of dynamic electron correlation effects in large molecular systems using multiconfigurational second-order perturbation theory (CASPT2). The method is restricted to cases where partitioning of the molecular system into an active site and an environment is meaningful. Only dynamic correlation effects derived from orbitals extending over the active site are included at the CASPT2 level of theory, whereas the correlation effects of the environment are retrieved at lower computational costs. For sufficiently large systems, the small errors introduced by this approximation are contrasted by the substantial savings in both storage and computational de…