Search results for "phase transition"
showing 10 items of 1281 documents
Flat Bands and Salient Experimental Features Supporting the Fermion Condensation Theory of Strongly Correlated Fermi
2020
The physics of strongly correlated Fermi systems, being the mainstream topic for more than half a century, still remains elusive. Recent advancements in experimental techniques permit to collect important data, which, in turn, allow us to make the conclusive statements about the underlying physics of strongly correlated Fermi systems. Such systems are close to a special quantum critical point represented by topological fermion-condensation quantum phase transition which separates normal Fermi liquid and that with a fermion condensate, forming flat bands. Our review paper considers recent exciting experimental observations of universal scattering rate related to linear temperature dependence…
Phase transitions in nonadditive hard disc systems: a Gibbs ensemble Monte Carlo Study
2007
we study the properties of a model fluid in two dimensions with Gibbs ensemble Monte Carlo (GEMC) techniques, in particular we analyze the entropy-driven phase separation in case of a nonadditive symmetric hard disc fluid. By a combination of GEMC with finite size scaling techniques we locate the critical line of nonadditivities as a function of the system density, which separates the mixing/demixing regions and compare with a simple analytical approximation.
Temperature-dependent phase transitions in water-oil-surfactant mixtures: Experiment and theory
1996
We investigate temperature induced phase transitions in mixtures of water, oil, and a nonionic surfactant. By microcalorimetric measurements it is shown that the droplet-lamellar transition shows hysteresis so that it is strongly first order. The position of this transition and of the emulsification boundary are quantitatively described by an interfacial model which considers solely the temperature dependence of the spontaneous curvature. There is no fit parameter in the model. Remarkably, the positions of both boundaries do not depend on the bending moduli. \textcopyright{} 1996 The American Physical Society.
ChemInform Abstract: Tuning the Defect Configurations in Nematic and Smectic Liquid Crystalline Shells
2013
Thin liquid crystalline shells surrounding and surrounded by aqueous phases can be conveniently produced using a nested capillary microfluidic system, as was first demonstrated by Fernandez-Nieves et al. in 2007. By choosing particular combinations of stabilizers in the internal and external phases, different types of alignment, uniform or hybrid, can be ensured within the shell. Here, we investigate shells in the nematic and smectic phases under varying boundary conditions, focusing in particular on textural transformations during phase transitions, on the interaction between topological defects in the director field and inclusions in the liquid crystal (LC), and on the possibility to relo…
Direct observation of a buckling transition during the formation of thin colloidal crystals
2007
We have investigated a colloidal suspension in a thin wedge formed by two glass plates in the presence of a lateral pressure. Starting with a single hexagonal layer, with increasing separation between the glass plates additional layers are added. This process is accompanied by a number of structural transitions necessary to maintain a high packing fraction under the given boundary conditions. Besides the well-known sequence of hexagonal and quadratic phases, we observe two new phases which are identified with the buckling and the rhombic phase recently predicted by other authors.
Brownian dynamics of polydisperse colloidal hard spheres: Equilibrium structures and random close packings
1994
Recently we presented a new technique for numerical simulations of colloidal hard-sphere systems and showed its high efficiency. Here, we extend our calculations to the treatment of both 2- and 3-dimensional monodisperse and 3-dimensional polydisperse systems (with sampled finite Gaussian size distribution of particle radii), focusing on equilibrium pair distribution functions and structure factors as well as volume fractions of random close packing (RCP). The latter were determined using in principle the same technique as Woodcock or Stillinger had used. Results for the monodisperse 3-dimensional system show very good agreement compared to both pair distribution and structure factor predic…
Monte Carlo Simulations of Growth Kinetics and Phase Transitions at Interfaces: Some Recent Results
1991
ABSTRACTIn the first part Monte Carlo studies of the kinetics of multilayer adsorption (without screening) are described. The approach to the jamming coverage in each layer is asymptotically exponential. The jamming coverages approach the infinite-layer limit value according to a power law. In the second part, studies of phase transitions in two dimensional fluids are reviewed. With a combination of Monte Carlo and finite size scaling block analysis techniques, accurate values are obtained for the critical temperatures, coexistence densities and the compressibilities of an adsorbed fluid layer in an NVT ensemble.
Phase transitions in polymer blends and block copolymer melts: Some recent developments
2005
The classical concepts about unmixing of polymer blends (Flory-Huggins theory) and about mesophase ordering in block copolymers (Leibler's theory) are briefly reviewed and their validity is discussed in the light of recent experiments, computer simulations and other theoretical concepts. It is emphasized that close to the critical point of unmixing non-classical critical exponents of the Ising universality class are observed, in contrast to the classical mean-field exponents implied by the Flory-Huggins theory. The temperature range of this non-mean-field behavior can be understood by Ginzburg criteria. The latter are also useful to discuss the conditions under which the linearized (Cahn-li…
Phase transitions and phase equilibria in spherical confinement
2013
Phase transitions in finite systems are rounded and shifted and affected by boundary effects due to the surface of the system. This interplay of finite size and surface effects for fluids confined inside of a sphere of radius $R$ is studied by a phenomenological theory and Monte Carlo simulations of a model for colloid-polymer mixtures. For this system the phase separation in a colloid-rich phase and a polymer-rich phase has been previously studied extensively in the bulk. It is shown that spherical confinement can strongly enhance the miscibility of the mixture. Depending on the wall potentials at the confining surface, the wetting properties of the wall can be controlled, and this interpl…
Computer Simulations and Coarse-Grained Molecular Models Predicting the Equation of State of Polymer Solutions
2010
Monte Carlo and molecular dynamics simulations are, in principle, powerful tools for carrying out the basic task of statistical thermodynamics, namely the prediction of macroscopic properties of matter from suitable models of effective interactions between atoms and molecules. The state of the art of this approach is reviewed, with an emphasis on solutions of rather short polymer chains (such as alkanes) in various solvents. Several methods of constructing coarse-grained models of the simple bead–spring type will be mentioned, using input either from atomistic models (considering polybutadiene as an example) or from experiment. Also, the need to have corresponding coarse-grained models of t…