Search results for "phase transitions"
showing 10 items of 65 documents
Size effect in phase transition kinetics
1988
The growth of a spontaneous lattice average magnetization in a magnetic system which is suddenly brought below the transition temperature is a stochastic process in which the very small fluctuations of the initial magnetization are amplified to a macroscopic size. The initial magnetization fluctuates in time around the zero average value because of the finite size of the system. As a consequence of the fluctuation-amplification phenomenon the nonlinear relaxation of the finite system is qualitatively different from that of the infinite one. The present paper studies this feature of phase-transition kinetics in the framework of a very simple model: the dynamical generalization of the spheric…
Effects of heat flux on lambda transition in liquid 4He,
2014
This paper is concerned with the derivation of a phase field model for λ-transition in 4He, when the liquid is subject to pressure and heat flux. As parameter that controls the transition, a field f that is the geometrical mean between the density of the fluid and that of the superfluid is used. The resulting model, that is a generalization of previous papers on the same subject, chooses as field variables the density, the velocity, the temperature and the heat flux, in addition to this field f. The restrictions on the constitutive quantities are obtained by using the Liu method of Lagrange multipliers. New results with respect to previous models are the presence of non-local terms to descr…
Heat Capacity and Entanglement Measure in a simple two-qubit model
2011
A simple two-qubit model showing Quantum Phase Transitions as a consequence of ground state level crossings is studied in detail. Using the Concurrence of the system as an entanglement measure and heat capacity as a marker of thermodynamical properties, an analytical expression giving the latter in terms of the former is obtained. A protocol allowing an experimental measure of entanglement is then presented and compared with a related proposal recently reported by Wie\'sniak, Vedral and Brukner
Liquid-liquid phase coexistence in gold clusters. 2D or not 2D?
2006
The thermodynamics of gold cluster anions (${\mathrm{Au}}_{N}^{\ensuremath{-}}$, $N=11,\dots{},14$) is investigated using quantum molecular dynamics. Our simulations suggest that ${\mathrm{Au}}_{N}^{\ensuremath{-}}$ may exhibit a novel, freestanding planar liquid phase which dynamically coexists with a normal three-dimensional liquid. Upon cooling with experimentally realizable cooling rates, the entropy-favored three-dimensional liquid clusters often supercool and solidify into the ``wrong'' dimensionality. This indicates that experimental validation of theoretically predicted ${\mathrm{Au}}_{N}^{\ensuremath{-}}$ ground states might be more complicated than hitherto expected.
Kinetics of Ordered Phases in Finite Spin Systems
1989
We study the growth of the ordered phase in a spin system of finite size suddenly brought below the transition temperature. Such a growth is driven by the instability of the mode corresponding to the largest eigenvalue of the interaction matrix. The relaxation occurs through different regimes according to whether the unstable mode has a negligible or macroscopic amplitude. One regime is characterised by dynamical scaling properties whereas in the other we can distinguish the growth to a macroscopic amplitude followed by rare transitions from one equilibrium amplitude to another. The analysis is carried out in the framework of a dynamical generalisation of the spherical model assuming non-ra…
Thermodynamic, dynamic and transport properties of quantum spin liquid in herbertsmithite from experimental and theoretical point of view
2019
In our review we focus on the quantum spin liquid, defining the thermodynamic, transport and relaxation properties of geometrically frustrated magnets (insulators) represented by herbertsmithite $\rm ZnCu_{3}(OH)_6Cl_2$.
Geometry of quantum phase transitions
2020
In this article we provide a review of geometrical methods employed in the analysis of quantum phase transitions and non-equilibrium dissipative phase transitions. After a pedagogical introduction to geometric phases and geometric information in the characterisation of quantum phase transitions, we describe recent developments of geometrical approaches based on mixed-state generalisation of the Berry-phase, i.e. the Uhlmann geometric phase, for the investigation of non-equilibrium steady-state quantum phase transitions (NESS-QPTs ). Equilibrium phase transitions fall invariably into two markedly non-overlapping categories: classical phase transitions and quantum phase transitions, whereas i…
Ultrafast critical ground state preparation via bang-bang protocols
2020
The fast and faithful preparation of the ground state of quantum systems is a challenging task but crucial for several applications in the realm of quantum-based technologies. Decoherence poses a limit to the maximum time-window allowed to an experiment to faithfully achieve such desired states. This is of particular significance in critical systems, where the vanishing energy gap challenges an adiabatic ground state preparation. We show that a bang-bang protocol, consisting of a time evolution under two different values of an externally tunable parameter, allows for a high-fidelity ground state preparation in evolution times no longer than those required by the application of standard opti…
A BADER’S TOPOLOGICAL APPROACH FOR THE CHARACTERIZATION OF PRESSURE INDUCED PHASE TRANSITIONS
2012
Finite-size effects in dynamics of zero-range processes
2010
The finite-size effects prominent in zero-range processes exhibiting a condensation transition are studied by using continuous-time Monte Carlo simulations. We observe that, well above the thermodynamic critical point, both static and dynamic properties display fluid-like behavior up to a density {\rho}c (L), which is the finite-size counterpart of the critical density {\rho}c = {\rho}c (L \rightarrow \infty). We determine this density from the cross-over behavior of the average size of the largest cluster. We then show that several dynamical characteristics undergo a qualitative change at this density. In particular, the size distribution of the largest cluster at the moment of relocation,…