Search results for "phosphatidylethanolamine"

showing 10 items of 51 documents

Lipid dependence of diadinoxanthin solubilization and de-epoxidation in artificial membrane systems resembling the lipid composition of the natural t…

2006

In the present study, the solubility and enzymatic de-epoxidation of diadinoxanthin (Ddx) was investigated in three different artificial membrane systems: (1) Unilamellar liposomes composed of different concentrations of the bilayer forming lipid phosphatidylcholine (PC) and the inverted hexagonal phase (H(II) phase) forming lipid monogalactosyldiacylglycerol (MGDG), (2) liposomes composed of PC and the H(II) phase forming lipid phosphatidylethanolamine (PE), and (3) an artificial membrane system composed of digalactosyldiacylglycerol (DGDG) and MGDG, which resembles the lipid composition of the natural thylakoid membrane. Our results show that Ddx de-epoxidation strongly depends on the con…

Membrane lipidsLipid BilayersMolecular ConformationBiophysicsSynthetic membranebilayer lipidBilayer lipidXanthophyllsBiologyXanthophyll cycleThylakoidsBiochemistryThylakoid membraneMembrane Lipidschemistry.chemical_compoundNon-bilayer lipidMembrane fluidityLipid bilayer phase behaviorDiadinoxanthinInverted hexagonal phaseUnilamellar LiposomesDiatomsPhosphatidylethanolamineLiposomeGalactolipidsPhosphatidylethanolaminesBilayerHexagonal phaseWaterxanthophyll cycleMembranes ArtificialCell Biologythylakoid membraneinverted hexagonal phaseKineticsCrystallographydiadinoxanthinSolubilitychemistryOxygenasesPhosphatidylcholinesnon-bilayer lipidlipids (amino acids peptides and proteins)
researchProduct

The Escherichia coli Envelope Stress Sensor CpxA Responds to Changes in Lipid Bilayer Properties

2015

The Cpx stress response system is induced by various environmental and cellular stimuli. It is also activated in Escherichia coli strains lacking the major phospholipid, phosphatidylethanolamine (PE). However, it is not known whether CpxA directly senses changes in the lipid bilayer or the presence of misfolded proteins due to the lack of PE in their membranes. To address this question, we used an in vitro reconstitution system and vesicles with different lipid compositions to track modulations in the activity of CpxA in different lipid bilayers. Moreover, the Cpx response was validated in vivo by monitoring expression of a PcpxP-gfp reporter in lipid-engineered strains of E. coli. Our comb…

Models MolecularCardiolipinsSurface PropertiesRecombinant Fusion ProteinsGreen Fluorescent ProteinsLipid BilayersArabidopsisPhospholipidBiologymedicine.disease_causeBiochemistrychemistry.chemical_compoundBacterial ProteinsGenes ReportermedicineAcholeplasma laidlawiiPhosphorylationLipid bilayerEscherichia coliPlant ProteinsPhosphatidylethanolamineEscherichia coli ProteinsPhosphatidylethanolaminesVesicleGlycosyltransferasesMembrane ProteinsPhosphatidylglycerolsCell biologychemistryMembrane proteinlipids (amino acids peptides and proteins)Protein foldingSignal transductionProtein KinasesProtein Processing Post-TranslationalSignal TransductionBiochemistry
researchProduct

Calorimetric Behavior of Phosphatidylcholine/Phosphatidylethanolamine Bilayers is Compatible with the Superlattice Model

2012

Differential scanning calorimetry was used to study the phase behavior of binary lipid bilayers consisting of phosphatidylcholine (PC) and phosphatidylethanolamine (PE) of varying acyl chain length. A two-state transition model was used to resolve the individual transition components, and the two-state transition enthalpy, the relative enthalpy, and the transition temperature of each component were plotted as a function of composition. Intriguingly, abrupt changes in these thermodynamic parameters were observed at or close to many "critical" X(PE) values predicted by the superlattice model proposing that phospholipids with different headgroups tend to adopt regular rather than random latera…

Models MolecularSuperlatticeLipid BilayersEnthalpyAnalytical chemistryThermodynamics02 engineering and technologyCalorimetryArticle03 medical and health scienceschemistry.chemical_compoundDifferential scanning calorimetryPhase (matter)PhosphatidylcholineMaterials ChemistryTransition TemperaturePhysical and Theoretical ChemistryLipid bilayer030304 developmental biologyPhysics::Biological Physics0303 health sciencesCalorimetry Differential ScanningChemistryPhosphatidylethanolaminesTransition temperature021001 nanoscience & nanotechnologySurfaces Coatings and FilmsPhosphatidylcholinesThermodynamics0210 nano-technologyThe Journal of Physical Chemistry B
researchProduct

Quenching of fluorescein-conjugated lipids by antibodies. Quantitative recognition and binding of lipid-bound haptens in biomembrane models, formatio…

1992

Three model biomembrane systems, monolayers, micelles, and vesicles, have been used to study the influence of chemical and physical variables of hapten presentation at membrane interfaces on antibody binding. Hapten recognition and binding were monitored for the anti-fluorescein monoclonal antibody 4–4-20 generated against the hapten, fluorescein, in these membrane models as a function of fluorescein-conjugated lipid architecture. Specific recognition and binding in this system are conveniently monitored by quenching of fluorescein emission upon penetration of fluorescein into the antibody's active site. Lipid structure was shown to play a large role in affecting antibody quenching. Interes…

Models MolecularTime FactorsProtein ConformationStereochemistry030303 biophysicsMolecular ConformationBiophysicsModels BiologicalMice03 medical and health scienceschemistry.chemical_compoundAnimalsFluoresceinBinding siteLipid bilayerMicellesPhospholipids030304 developmental biologyPhosphatidylethanolamine0303 health sciencesLiposomeVesicleCell MembraneAntibodies MonoclonalMembranes ArtificialBiological membraneFluoresceinsKineticsSpectrometry FluorescencechemistryLiposomeslipids (amino acids peptides and proteins)Binding Sites AntibodyHaptensHaptenResearch ArticleBiophysical Journal
researchProduct

Influence of chirality on the structure of phospholipid monolayers.

1993

Molecular StructureChemistryStereochemistryPhosphatidylethanolaminesSynthetic membranePhospholipidBiophysicsMolecular ConformationStereoisomerismMembranes ArtificialStereoisomerismCrystal structureMolecular conformationBiophysical Phenomenachemistry.chemical_compoundX-Ray DiffractionMonolayerBiophysicsMoleculeChirality (chemistry)PhospholipidsResearch ArticleBiophysical journal
researchProduct

Hydrolytic action of phospholipase A2 in monolayers in the phase transition region: direct observation of enzyme domain formation using fluorescence …

1990

Phospholipase A2, a ubiquitous lipolytic enzyme highly active in the hydrolysis of organized phospholipid substrates, has been characterized optically in its action against a variety of phospholipid monolayers using fluorescence microscopy. By labeling the enzyme with a fluorescent marker and introducing it into the subphase of a Langmuir film balance, the hydrolysis of lipid monolayers in their liquid-solid phase transition region could be directly observed with the assistance of an epifluorescence microscope. Visual observation of hydrolysis of different phospholipid monolayers in the phase transition region in real-time could differentiate various mechanisms of hydrolytic action against …

Phase transition12-DipalmitoylphosphatidylcholineStereochemistryBiophysicsPhospholipidBiochemistryPhospholipases Achemistry.chemical_compoundPhospholipase A2Phase (matter)MonolayerEnzyme StabilityFluorescence microscopeLipid bilayer phase behaviorParticle SizePhospholipidsFluorescent DyesElapid VenomsPhospholipase ABinding SitesbiologyHydrolysisPhosphatidylethanolaminesCell BiologyImage EnhancementPhospholipases A2chemistryMicroscopy FluorescencePhospholipasesBiophysicsbiology.proteinlipids (amino acids peptides and proteins)DimyristoylphosphatidylcholineBiochimica et biophysica acta
researchProduct

Lipid Composition Analysis Reveals Mechanisms of Ethanol Tolerance in the Model YeastSaccharomyces cerevisiae

2021

Saccharomyces cerevisiae is an important unicellular yeast species within the biotechnological and the food and beverage industries. A significant application of this species is the production of ethanol, where concentrations are limited by cellular toxicity, often at the level of the cell membrane. Here, we characterize 61 S. cerevisiae strains for ethanol tolerance and further analyze five representatives with various ethanol tolerances. The most tolerant strain, AJ4, was dominant in coculture at 0 and 10% ethanol. Unexpectedly, although it does not have the highest noninhibitory concentration or MIC, MY29 was the dominant strain in coculture at 6% ethanol, which may be linked to differen…

Phosphatidylethanolamine0303 health sciencesEthanolEcologybiology030306 microbiologyChemistrySaccharomyces cerevisiaeLipidomebiology.organism_classificationApplied Microbiology and BiotechnologySaccharomycesYeastCell membrane03 medical and health scienceschemistry.chemical_compoundmedicine.anatomical_structureMembranemedicineFood science030304 developmental biologyFood ScienceBiotechnologyApplied and Environmental Microbiology
researchProduct

Validation of liposomal lipid composition by thin-layer chromatography.

2012

Liposomes of different sizes are frequently used model systems for cellular membranes. To mimic the cellular environment, these liposomes are often prepared from a mixture of different lipids in organic solution. The preparation involves, at some point, the transfer into aqueous solution. Thus, both the total amount of lipid and the relative amount of each lipid species might deviate from the original composition in the organic solvent. We used thin-layer chromatography combined with a lipid extraction step to check whether the liposomes in the final aqueous solution have the intended composition. This allows determination of the lipid composition not only for large unilamellar vesicles, bu…

PhosphatidylethanolamineLiposomeAqueous solutionChromatographyChemistryVesiclePharmaceutical ScienceLipidsThin-layer chromatographychemistry.chemical_compoundMembranePhosphatidylcholineLiposomeslipids (amino acids peptides and proteins)Chromatography Thin LayerSphingomyelinJournal of liposome research
researchProduct

The Pandinus imperator haemolymph lipoprotein, an unusual phosphatidylserine carrying lipoprotein.

2009

The haemolymph lipoprotein of the scorpion, Pandinus imperator was isolated and characterised. Contrary to the lipoproteins of insects and the discoidal HDL-lipoproteins of a crayfish and polychaete, the Pandinus lipoprotein consists of three instead of two apoproteins (apoPiLp I = 230 kDa, apoPiLp II = 130 kDa and apoPiLp III = 120 kDa). The apolipoproteins are arranged in varying stoichiometries as judged by cross-linking experiments. In lipoprotein samples from individual animals, the two smaller subunits occurred in a 1:1 stoichiometry, while the relative amount of the 230 kDa peptide varied. The lipoprotein is a slightly heart-shaped HDL with a diameter of approximately 15 nm. It is pr…

PhosphatidylethanolamineMolecular massLipoproteinsBiological TransportPhosphatidylserinePhosphatidylserinesBiologybiology.organism_classificationBiochemistryMolecular WeightScorpionsPandinuschemistry.chemical_compoundHigh-density lipoproteinBiochemistrychemistryInsect SciencePhosphatidylcholineHemolymphHemolymphAnimalsInsect Proteinslipids (amino acids peptides and proteins)Molecular BiologyLipoproteinInsect biochemistry and molecular biology
researchProduct

n-3 PUFAs modulate T-cell activation via protein kinase C-α and -ε and the NF-κB signaling pathway

2005

We elucidated the mechanisms of action of two n-3 PUFAs, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), in Jurkat T-cells. Both DHA and EPA were principally incorporated into phospholipids in the following order: phosphatidylcholine < phosphatidylethanolamine < phosphatidylinositol/phosphatidylserine. Furthermore, two isoforms of phospholipase A(2) (i.e., calcium-dependent and calcium-independent) were implicated in the release of DHA and EPA, respectively, during activation of these cells. The two fatty acids inhibited the phorbol 12-myristate 13-acetate (PMA)-induced plasma membrane translocation of protein kinase C (PKC)-alpha and -epsilon. The two n-3 PUFAs also inhibited t…

PhosphatidylethanolaminePhospholipase Amitogen-activated protein kinaseProtein Kinase C-epsilonQD415-436Cell BiologyPhosphatidylserineBiologyfatty acidsBiochemistryJurkat cellsCell biologychemistry.chemical_compoundEndocrinologychemistryBiochemistryDocosahexaenoic acidlipids (amino acids peptides and proteins)Phosphatidylinositolnuclear factor κBProtein kinase Cpolyunsaturated fatty acidsJournal of Lipid Research
researchProduct