Search results for "photo-physics"

showing 3 items of 3 documents

Fluorescent nitrogen-rich carbon nanodots with an unexpected β-C3N4nanocrystalline structure

2016

Carbon nanodots are a class of nanoparticles with variable structures and compositions which exhibit a range of useful optical and photochemical properties. Since nitrogen doping is commonly used to enhance the fluorescence properties of carbon nanodots, understanding how nitrogen affects their structure, electronic properties and fluorescence mechanism is important to fully unravel their potential. Here we use a multi-technique approach to study heavily nitrogen-doped carbon dots synthesized by a simple bottom-up approach and capable of bright and color-tunable fluorescence in the visible region. These experiments reveal a new variant of optically active carbonaceous dots, that is a nanocr…

Materials scienceBand gapSettore FIS/01 - Fisica Sperimentalenanocarbon photoluminescence photo-physics photo-chemistryNanoparticlechemistry.chemical_elementNanotechnology02 engineering and technologyGeneral Chemistry010402 general chemistry021001 nanoscience & nanotechnologyPhotochemistry01 natural sciencesFluorescenceSettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)Nanocrystalline material0104 chemical scienceschemistryNanocrystalMaterials ChemistryBeta carbon nitride0210 nano-technologyCarbonSurface statesJournal of Materials Chemistry C
researchProduct

Influence of Nitrogen Doping on Device Operation for TiO 2 -Based Solid-State Dye-Sensitized Solar Cells: Photo-Physics from Materials to Devices

2016

International audience; Solid-state dye-sensitized solar cells (ssDSSC) constitute a major approach to photovoltaic energy conversion with efficiencies over 8% reported thanks to the rational design of efficient porous metal oxide electrodes, organic chromophores, and hole transporters. Among the various strategies used to push the performance ahead, doping of the nanocrystalline titanium dioxide (TiO 2) electrode is regularly proposed to extend the photo-activity of the materials into the visible range. However, although various beneficial effects for device performance have been observed in the literature, they remain strongly dependent on the method used for the production of the metal o…

Materials scienceGeneral Chemical EngineeringKineticsta221Oxide02 engineering and technology010402 general chemistry01 natural sciences7. Clean energylcsh:Chemistrychemistry.chemical_compoundX-ray photoelectron spectroscopyphoto-responseTiO2General Materials Sciencespiro-OMeTADDopantta114business.industryDopingsolid-state dye-sensitized solar cells; TiO<sub>2</sub>; nitrogen doping; photo-physics; photo-response; spiro-OMeTADnitrogen doping[CHIM.MATE]Chemical Sciences/Material chemistrysolid-state dye-sensitized solar cells021001 nanoscience & nanotechnology0104 chemical sciencesDye-sensitized solar celllcsh:QD1-999chemistrySpiro-OMeTADElectrodeOptoelectronicsCharge carrier0210 nano-technologybusinessphoto-physicsTiO 2
researchProduct

Influence of Nitrogen Doping on Device Operation for TiO₂-Based Solid-State Dye-Sensitized Solar Cells: Photo-Physics from Materials to Devices.

2015

Solid-state dye-sensitized solar cells (ssDSSC) constitute a major approach to photovoltaic energy conversion with efficiencies over 8% reported thanks to the rational design of efficient porous metal oxide electrodes, organic chromophores, and hole transporters. Among the various strategies used to push the performance ahead, doping of the nanocrystalline titanium dioxide (TiO2) electrode is regularly proposed to extend the photo-activity of the materials into the visible range. However, although various beneficial effects for device performance have been observed in the literature, they remain strongly dependent on the method used for the production of the metal oxide, and the influence o…

spiro-OMeTADphoto-responsenitrogen dopingTiO2solid-state dye-sensitized solar cellsphoto-physicsArticleNanomaterials (Basel, Switzerland)
researchProduct