Search results for "photodiode"
showing 10 items of 58 documents
Test and Simulation of a LYSO+APD matrix with a tagged Photon Beam from 40 to 300 MeV
2012
Understanding the energy resolution terms for LYSO based calorimeters with APD readout at low energy (< 500 MeV) is relevant both for the completion of the KLOE-2 experiment, at DAΦNE, and for the design of the Mu2e calorimeter. In this work, we present a dedicated comparison between experimental data, taken in 2011 at the MAMI tagged photon beam facility with a crystal matrix prototype, and a full Geant-4 simulation of this detector. The crystal prototype matrix consisted of 9 2×2 × 15 cm3 LYSO crystals read-out by 10×10 mm2 Hamamatsu avalanche photodiodes (APD) surrounded by 8 PbWO4 crystals read-out by Bialkali photomultipliers for outer leakage recovery granting a total transverse cover…
The backward end-cap for the PANDA electromagnetic calorimeter
2015
The PANDA experiment at the new FAIR facility will cover a broad experimental programme in hadron structure and spectroscopy. As a multipurpose detector, the PANDA spectrometer needs to ensure almost 4π coverage of the scattering solid angle, full and accurate multiple-particle event reconstruction and very good particle identification capabilities. The electromagnetic calorimeter (EMC) will be a key item for many of these aspects. Particle energies ranging from some MeVs to several GeVs have to be measured with a relative resolution of 1% ⊕ 2%/√E/GeV . It will be a homogeneous calorimeter made of PbWO4 crystals and will be operated at -25°C, in order to improve the scintillation light yiel…
Background and muon counting rates in underground muon measurements with a plastic scintillator counter based on a wavelength shifting fibre and a mu…
2010
AbstractIn this short note we present results of background measurements carried out with polystyrene based cast plastic 12.0×12.0×3.0 cm3 size scintillator counter with a wavelength shifting fibre and a multi-pixel Geiger mode avalanche photodiode readout in the Baksan underground laboratory at a depth of 200 metres of water equivalent. The total counting rate of the scintillator counter measured at this depth and at a threshold corresponding to ∼0.37 of a minimum ionizing particle is approximately 1.3 Hz.
Time response of avalanche photodiodes as a function of the internal gain
1998
Abstract Using a red LED and a blue laser as a light source, time response of avalanche photodiodes and Metal-Resistive Silicon (MRS) layer avalanche photodiodes [1] has been measured. A strong dependence of the time resolution on the internal gain has been observed. The obtained results show that the increase of the internal gain improves the time resolution. However, there exists a critical value for the internal gain. Beyond this value a deterioration of the time resolution is observed.
Multi-pixel Geiger-mode avalanche photodiode and wavelength shifting fibre readout of plastic scintillator counters of the EMMA underground experiment
2009
The results of a development of a scintillator counter with wavelength shifting (WLS) fibre and a multi-pixel Geiger-mode avalanche photodiode readout are presented. The photodiode has a metal-resistor-semiconductor layered structure and operates in the limited Geiger mode. The scintillator counter has been developed for the EMMA underground cosmic ray experiment.
Gain stabilization and noise minimization for SiPMs at cryogenic temperatures
2018
Abstract The performance of solid-state photon detectors such as avalanche photodiodes or silicon photomultipliers (SiPMs) is strongly affected by temperature. Important device characteristics for the detection of low light levels or single photons are photon detection efficiency, dark noise, and gain. In the present work the C-series SiPMs from SensL was characterized in cryogenic environments. At 77 K the SiPMs proved to be an excellent choice for single photon detection and an operation point with minimum noise contributions was found. At 4 K the performance was degraded, exhibiting a smaller gain and a larger noise.
Comparison of Silicon Photomultiplier Characteristics using Automated Test Setups
2016
Silicon Photomultipliers (SiPM) are photo-sensors consisting of an array of hundreds to thousands pixels with a typical pitch of 10-100 μm. They exhibit an excellent photon counting and time resolution. Therefore applications of SiPMs are emerging in many fields. In order to characterize SiPMs, the PRISMA Detector Lab at Mainz has established three automated test setups. Setup-A is dedicated to measure the gain, the dark count rate and the optical crosstalk probability. The temperature dependencies are characterized by operating the setup in a climate chamber. Setup-B is an optical system to measure the photon detection efficiency. Setup-C addresses the most challenging aspect of comparing …
Evaluation of a Commercial PhotoDiode Array for Radiation Detectors Readout
2011
The aim of the present work is the characterization of the new S8866-128-02 PhotoDiode (PD) array from Hamamatsu Photonics. This work includes the implementation of a readout system as well as electronic noise estimation in PDs under several conditions varying integration times and clock frequencies.
FARCOS: a versatile and modular Femtoscopy Array for Correlations and Spectroscopy
2012
In the framework of multi-fragmentation experiments the evolution towards two- (or more) particle correlations with stable and radioactive beams calls for the development of a novel detection system featuring high angular and energy resolution and able to reconstruct the particles momentum at high precision. The proposed detection system, named FARCOS (Femtoscopy ARray for COrrelations and Spectroscopy) will be beneficial for different physical cases. To this aim we are building a prototype detection system featuring four telescopes. Each telescope features an active area of 6.4 cm × 6.4 cm and is composed of three detection stages. The first ΔE stage is a Double Sided Silicon Strip Detecto…
Light Charged Particle Identification by Means of Digital Pulse Shape Acquisition in the CHIMERACsI(Tl) Detectors at GSI Energies
2011
We report the results obtained by applying digital pulse shape acquisition and digital signal processing to the signals from CsI(Tl) scintillators read out by photodiodes at high incident energy (400 MeV/u). The digitized signals allows the discrimination of light charged particles by computing the Fast and Slow components and the Rise Time of the output pulses of the CsI(Tl). When the energies of the light charged particles exceed those corresponding to their ranges in CsI(Tl), the points related to the punching-through particles gather in the corresponding scatter plots giving rise to a cusp. The punching-through points are used as energy calibration points for the reaction products stopp…