Search results for "physical chemistry"
showing 10 items of 1199 documents
The strictly-correlated electron functional for spherically symmetric systems revisited
2017
The strong-interaction limit of the Hohenberg-Kohn functional defines a multimarginal optimal transport problem with Coulomb cost. From physical arguments, the solution of this limit is expected to yield strictly-correlated particle positions, related to each other by co-motion functions (or optimal maps), but the existence of such a deterministic solution in the general three-dimensional case is still an open question. A conjecture for the co-motion functions for radially symmetric densities was presented in Phys.~Rev.~A {\bf 75}, 042511 (2007), and later used to build approximate exchange-correlation functionals for electrons confined in low-density quantum dots. Colombo and Stra [Math.~M…
DFT calculation of structures and NMR chemical shifts of simple models of small diameter zigzag single wall carbon nanotubes (SWCNTs)
2011
Linearly conjugated benzene rings (acenes), belt-shape molecules (cyclic acenes) and model single wall carbon nanotubes (SWCNTs) were fully optimized at the unrestricted level of density functional theory (UB3LYP/6-31G*). The models of SWCNTs were selected to get some insight into the potential changes of NMR chemical shift upon systematic increase of the molecular size. The theoretical NMR chemical shifts were calculated at the B3LYP/pcS-2 level of theory using benzene as reference. In addition, the change of radial breathing mode (RBM), empirically correlated with SWCNT diameter, was directly related with the radius of cyclic acenes. Both geometrical and NMR parameters were extrapolated t…
Assessment of the Potential Energy Hypersurfaces in Thymine within Multiconfigurational Theory: CASSCF vs. CASPT2
2016
The present study provides new insights into the topography of the potential energy hypersurfaces (PEHs) of the thymine nucleobase in order to rationalize its main ultrafast photochemical decay paths by employing two methodologies based on the complete active space self-consistent field (CASSCF) and the complete active space second-order perturbation theory (CASPT2) methods: (i) CASSCF optimized structures and energies corrected with the CASPT2 method at the CASSCF geometries and (ii) CASPT2 optimized geometries and energies. A direct comparison between these strategies is drawn, yielding qualitatively similar results within a static framework. A number of analyses are performed to assess t…
Revised Atomistic Models of the Crystal Structure of C–S–H with high C/S Ratio
2016
Abstract The atomic structure of calcium-silicate-hydrate (C1.67–S–H x ) has been studied. Atomistic C–S–H models suggested in our previous study have been revised in order to perform a direct comparison of energetic stability of the different structures. An extensive set of periodic structures of C–S–H with variation of water content was created, and then optimized using molecular dynamics with reactive force field ReaxFF and quantum chemical semiempirical method PM6. All models show organization of water molecules inside the structure of C–S–H. The new geometries of C–S–H, reported in this paper, show lower relative energy with respect to the geometries from the original definition of C–S…
Characterization of adsorbed water in MIL-53(Al) by FTIR spectroscopy and ab-initio calculations
2015
Here, we report ab-initio calculations developed with a twofold purpose: understand how adsorbed water molecules alter the infrared spectrum of the metal-organic framework MIL-53(Al) and to investigate which are the associated physico-chemical processes. The analyzed structures are the two anhydrous narrow (np⊘) and large (lp⊘) pore forms and the hydrated narrow pore form (np-H2O) of the MIL-53(Al). For these structures, we determined their corresponding infrared spectra (FTIR) and we identified the vibrational modes associated to the dominant spectral lines. We show that wagging and scissoring modes of CO2 give flexibility to the structure for facilitating the lp⊘- np⊘ transition. In our s…
Studies of structures and properties of polymeric systems containing bis-(hydroxy-arylidene)alkanones as NLO-active chromophores
2002
Abstract NLO-properties of polymer systems containing bis-(hydroxy-arylidene)alkanone chromophores were studied experimentally and analyzed using ab initio quantum chemical calculations. A monoclinic crystal structure (space group P2111) of the polyester containing fragments of such chromophores in the backbone was simulated and a reasonable agreement between the experimental and simulated X-ray powder diffraction patterns was achieved. Ab initio quantum-mechanical estimations of the SHG-observable macroscopic second-order non-linearity tensor coefficients, obtained for the polymer crystal structure at the HF SCF level, led to the major dXZZ-coefficient of 1.9 pm/V. Films of ionic complexes…
Thermodynamic stability of stoichiometric LaFeO 3 and BiFeO 3 : a hybrid DFT study
2017
BiFeO3 perovskite attracts great attention due to its multiferroic properties and potential use as a parent material for Bi1−xSrxFeO3−δ and Bi1−xSrxFe1−yCoyO3−δ solid solutions in intermediate temperature cathodes of oxide fuel cells. Another iron-based LaFeO3 perovskite is the end member for well-known solid solutions (La1−xSrxFe1−yCoyO3−δ) used for oxide fuel cells and other electrochemical devices. In this study an ab initio hybrid functional approach was used for the study of the thermodynamic stability of both LaFeO3 and BiFeO3 with respect to decompositions to binary oxides and to elements, as a function of temperature and oxygen pressure. The localized (LCAO) basis sets describing th…
Metal film growth on regular and defective MgO(001) surface: A comparative ab initio simulation and thermodynamic study
2006
Abstract In order to understand the difference in metallic film growth modes on perfect and defective oxide substrates, we have combined ab initio B3LYP periodic calculations on the slab models of the corresponding Me/MgO(0 0 1) interfaces (Me = Ag, Cu) with thermodynamic theory of solid solutions. For a defectless magnesia surface, we confirm the experimentally observed submonolayer growth of 3D metallic islands (Ag possesses a higher trend than Cu). Formation of Fs centers (neutral O vacancies) on the substrate markedly enhances metal atom adsorption as compared to physisorption over regular sites on a defect-free substrate. For the first time, we predict that the presence of these surfac…
Experimental Investigations and Ab Initio Studies of Tellurium(II) Dithiolates, Te(SR)2
1999
The reaction between Te(O(i)Pr)(4) and HSR offers a new and effective route to tellurium dithiolates, Te(SR)(2). Te(S(i)Pr)(2) (1) and Te(S(t)Bu)(2) (2) are stable compounds whereas Te(SPh)(2) (3) slowly decomposes at room temperature to give Te and Ph(2)S(2). IR spectra of 1-3 and ab initio calculations (HF/3-21G(d) and MP2 with double-zeta polarization effective core potential basis set) show nu(as)(Te-S) and nu(s)(Te-S) to be around 340 and 380 cm(-)(1), respectively. UV spectra exhibit similar lambda(max) (346-348 nm) for all three compounds, with the greater extinction coefficient of 3 accounting for its different and more intense color. Analysis of the molecular orbitals of the model …
Periodic behaviour in heterogeneous chemical reactions
1992
Abstract The authors present an analytical and numerical analysis for a solid-gas oxidation process represented by a set of coupled reaction rates equations. The equations describe the time evolution of four elementary process that govern the overall heterogeneous kinetics. The description formation of a new oxide unit considers: (1) an internal interface (oxide-metal) reaction by which an activated complex is formed; (2) the dissolution of the complex produce a chemical element σ; (3) the diffusion of σ through the oxide layer; and (4) an external interface (oxide-gas) reaction. The results reported here delinate the parameter region where chemical oscillations are present.