Search results for "physical chemistry"
showing 10 items of 1199 documents
Carbonyl compounds of Rh, Ir, and Mt: electronic structure, bonding and volatility
2020
With the aim to render assistance to future experiments on the production and investigation of chemical properties of carbonyl compounds of element 109, Mt, calculations of the molecular properties of M(CO)4 and MH(CO)4, where M = Rh, Ir, and Mt, and of the products of their decomposition, M(CO)3 and MH(CO)3, were performed using relativistic Density Functional Theory and Coupled-Cluster methods implemented in the ADF, ReSpect and DIRAC software suites. According to the results, MH(CO)4 should be formed at experimental conditions from the M atom with a mixture of CO and He gases. The calculated first M–CO bond dissociation energies (FBDE) of Mt(CO)4 and MtH(CO)4 turned out to be significant…
The electronic properties of an oxygen vacancy at ZrO2-terminated (001) surfaces of a cubic PbZrO3: computer simulations from the first principles
2008
Combining B3PW hybrid exchange-correlation functional within the density functional theory (DFT) and a supercell model, we calculated from the first principles the electronic structure of both ideal PbZrO(3) (001) surface (with ZrO(2)- and PbO-terminations) and a neutral oxygen vacancy also called the F center. The atomic relaxation and electronic density redistributions are discussed. Thermodynamic analysis of pure surfaces indicates that ZrO(2) termination is energetically more favorable than PbO-termination. The O vacancy on the ZrO(2)-surface attracts approximately 0.3 e (0.7 e in the bulk PbZrO(3)), while the remaining electron density from the missing O(2-) ion is localized mostly on …
The structural aspects of the transformation of 3-nitroisoxazoline-2-oxide to 1-aza-2,8-dioxabicyclo[3.3.0]octane derivatives: Experimental and MEDT …
2019
Abstract Reaction of 3-nitroisoxazoline-2-oxide with monosubstituted ethenes, first time documented fifty years ago, have been reviewed. Structures of phenyl and cyano derivatives of 1-aza-2,8-dioxabicyclo[3.3.0]octane produced in [3 + 2] cycloaddition (32CA) between styrene and acrylonitrile with 3-nitroisoxazoline-2-oxide were determined through single crystal XRD analysis. The molecular mechanism of the title 32CA has been also analyzed within the Molecular Electron Density Theory (MEDT) based on the M06-2X(PCM)/6-311 + G(d,p) calculations.
Hybrid QM/MM Molecular Dynamics with AMOEBA Polarizable Embedding
2017
International audience; We present the implementation of a Born-Oppenheimer (BO) hybrid Quantum Mechan-ics/Molecular Mechanics (QM/MM) Molecular Dynamics (MD) strategy using Density Functional Theory (DFT) and the polarizable AMOEBA force field. This approach couples the Gaussian and Tinker suite of programs through a variational formalism allowing for a full self-consistent relaxation of both the AMOEBA induced dipoles and the DFT electronic density at each MD step. As the DFT SCF cycles are the limiting factor in terms of computational efforts and MD stability, we focus on the latter aspect and compare the Time-Reversible BO (TR– BO) and the Extended BO Lagrangian approaches (XL–BO) to th…
A small spherical liquid: A DFT molecular dynamics study of WAu12
2009
The finite-temperature dynamics of WAu12, incorporating both electronic and structural effects, is studied using a density-functional-based Born-Oppenheimer molecular dynamics method. Molecular dynamics simulations for monomolecular WAu12 suggest a surface-melting-type behaviour of the angular degrees of freedom between 366 and 512 K. Thermally averaged electron density-of-states of WAu12 are compared to the experimental photoelectron spectra of WAu12(-).
Theoretical Study of the 15- and 17-Electron Structures of Cyclopentadienylchromium(III) and Cyclopentadienylmolybdenum(III) Complexes. Dichloride an…
1997
International audience; The structure and the energetics of the model systems CpMX2(PH3) + PH3 ⇄ CpMX2(PH3)2 (Cp = cyclopentadienyl; M = Cr, Mo; X = Cl, CH3) are studied by performing Møller−Plesset second order (MP2) and density functional theory (DFT) calculations. Extended basis sets are employed in the geometry optimizations. The results indicate that the structural preference can be traced back to the competition between electron pairing stabilization and M−P bond dissociation energy along the spin doublet surface. At all levels of calculation, the energy splitting, a measure of the cost of pairing the electron during the promotion process from the quartet ground state to the excited d…
Temperature dependence of the isotropic hyperfine coupling constants in 1,4-hydroquinone and 1,4-dihydroxynaphthalene cation radicals
1998
Oxygen K-shell spectroscopy of isolated progressively solvated peptide
2020
Gas-phase near-edge X-ray-absorption fine structure (NEXAFS) action spectroscopy around the oxygen K-edge and mass spectrometry were employed to probe isolated substance P (SP) molecular ions, both bare and progressively solvated with 4 and 11 water molecules. Detailed mass spectra of bare and hydrated precursors are presented for the resonant photon energy of 532 eV that corresponds to O1s --> pi(amide)* core excitation, triggering resonant Auger decay and fragmentation from the ionized radical molecular system. The fragmentation pattern of doubly protonated SP hydrated with 4 water molecules clearly shows a series of abundant doubly charged backbone fragments, as well as triply charged pr…
Semiempirical correlation between the optical band gap of oxides and hydroxides and the electronegativity of their constituents
2000
AbstractOn the basis of new experimental results a previous proposed correlation between the optical band gap of oxides and the difference of electronegativity of their constituents is extended to mixed crystalline and amorphous TiO2-Fe2O3 (d,d-metal oxides) as well as to amorphous passive films grown on Al-Ta, Al-Ti, Al-Nb and Al-W alloys (sp,d-metal oxides). Moreover in analogy with previous results on anhydrous oxides, a correlation is proposed between the optical band gap of hydroxides and the electronegativities of their constituents after substituting the electronegativity of hydroxilic group to that of the oxygen. Like in the case of anhydrous oxides, two different interpolation line…
Carbonyl Back-Bonding Influencing the Rate of Quantum Tunnelling in a Dysprosium Metallocene Single-Molecule Magnet.
2019
The isocarbonyl-ligated metallocene coordination polymers [Cp*2M(μ-OC)W(Cp)(CO)(μ-CO)]∞ were synthesized with M = Gd (1, L = THF) and Dy (2, no L). In a zero direct-current field, the dysprosium version 2 was found to be a single-molecule magnet (SMM), with analysis of the dynamic magnetic susceptibility data revealing that the axial metallocene coordination environment leads to a large anisotropy barrier of 557(18) cm–1 and a fast quantum-tunnelling rate of ∼3.7 ms. Theoretical analysis of two truncated versions of 2, [Cp*2Dy{(μ-OC)W(Cp)(CO)2}2]− (2a), and [Cp*2Dy(OC)2]+ (2b), in which the effects of electron correlation outside the 4f orbital space were studied, revealed that tungsten-to-…