Search results for "physics.chem-ph"

showing 10 items of 359 documents

Damming an electronic energy reservoir: ion-regulated electronic energy shuttling in a [2]rotaxane

2021

We demonstrate the first example of bidirectional reversible electronic energy transfer (REET) between the mechanically bonded components of a rotaxane. Our prototypical system was designed such that photoexcitation of a chromophore in the axle results in temporary storage of electronic energy in a quasi-isoenergetic “reservoir” chromophore in the macrocycle. Over time, the emissive state of the axle is repopulated from this reservoir, resulting in long-lived, delayed luminescence. Importantly, we show that cation binding in the cavity formed by the mechanical bond perturbs the axle chromophore energy levels, modulating the REET process, and ultimately providing a luminescence read-out of c…

Cation binding[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics]RotaxaneMaterials scienceMechanical bond010405 organic chemistryluminesenssiMolecular sensorGeneral ChemistryChromophore010402 general chemistryPhotochemistry7. Clean energy01 natural sciences0104 chemical sciencesIonPhotoexcitationChemistrysupramolekulaarinen kemia[CHIM]Chemical Sciencesvalokemia[PHYS.PHYS.PHYS-CHEM-PH]Physics [physics]/Physics [physics]/Chemical Physics [physics.chem-ph]Luminescence
researchProduct

On the physico-chemical evolution of low-pH and CEM I cement pastes interacting with Callovo-Oxfordian pore water under its in situ CO2 partial press…

2014

International audience; Abstract Within the framework of geological repositories for radioactive waste, structural concretes must be adapted to the underground chemical conditions. CEM I cement-based materials are characterised by high pH that may produce an alkaline plume in the near-field of the repository. In order to avoid this problem, low-pH cements have been designed. This study compares the physico-chemical behaviour of a low-pH material with a CEM I cement paste, both being subjected to leaching by an aqueous solution. An original experimental setup was designed to reproduce the underground conditions using a specific CO2 regulation device. Under these conditions, the low-pH materi…

CementMaterials scienceAqueous solutionta114Precipitation (chemistry)Microstructure (B) Carbonation (C) Cement paste (D) Durability (C) Degradation (C)MineralogyRadioactive wasteBuilding and Construction010501 environmental sciences010502 geochemistry & geophysicsMicrostructure01 natural sciencesPore water pressureChemical engineeringGeneral Materials Science[PHYS.PHYS.PHYS-CHEM-PH]Physics [physics]/Physics [physics]/Chemical Physics [physics.chem-ph]Leaching (metallurgy)Porosity0105 earth and related environmental sciencesCement and Concrete Research
researchProduct

Two-Step Nucleation Process of Calcium Silicate Hydrate, the Nanobrick of Cement

2018

Despite a millennial history and the ubiquitous presence of cement in everyday life, the molecular processes underlying its hydration behavior, like the formation of calcium–silicate–hydrate (C–S–H), the binding phase of concrete, are mostly unexplored. Using time-resolved potentiometry and turbidimetry combined with dynamic light scattering, small-angle X-ray scattering, and cryo-TEM, we demonstrate C–S–H formation to proceed via a complex two-step pathway. In the first step, amorphous and dispersed spheroids are formed, whose composition is depleted in calcium compared to C–S–H and charge compensated with sodium. In the second step, these amorphous spheroids crystallize to tobermorite-typ…

CementMaterials scienceGeneral Chemical EngineeringNucleation02 engineering and technologyGeneral Chemistry010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences0104 chemical sciencesAmorphous solidlaw.inventionchemistry.chemical_compoundchemistryDynamic light scatteringChemical engineeringlawPhase (matter)PercolationMaterials Chemistry[PHYS.PHYS.PHYS-CHEM-PH]Physics [physics]/Physics [physics]/Chemical Physics [physics.chem-ph]Calcium silicate hydrateCrystallization0210 nano-technologyComputingMilieux_MISCELLANEOUS
researchProduct

Intrinsic Acidity of Surface Sites in Calcium Silicate Hydrates and Its Implication to Their Electrokinetic Properties

2014

Calcium Silicate Hydrates (C–S–H) are the major hydration products of portland cement paste. The accurate description of acid–base reactions at the surface of C–S–H particles is essential for both understanding the ion sorption equilibrium in cement and prediction of mechanical properties of the hardened cement paste. Ab initio molecular dynamics simulations at the density functional level of theory were applied to calculate intrinsic acidity constants (pKa’s) of the relevant ≡SiOH and ≡CaOH2 groups on the C–S–H surfaces using a thermodynamic integration technique. Ion sorption equilibrium in C–S–H was modeled applying ab initio calculated pKa’s in titrating Grand Canonical Monte Carlo simu…

CementQuantitative Biology::BiomoleculesChemistryAb initioThermodynamicsThermodynamic integrationSorptionElectrolyteSurfaces Coatings and FilmsElectronic Optical and Magnetic Materialslaw.inventionElectrokinetic phenomenachemistry.chemical_compoundPortland cementGeneral EnergylawCalcium silicate550 Earth sciences & geologyPhysical chemistry[PHYS.PHYS.PHYS-CHEM-PH]Physics [physics]/Physics [physics]/Chemical Physics [physics.chem-ph]Physical and Theoretical ChemistryPhysics::Chemical PhysicsComputingMilieux_MISCELLANEOUS
researchProduct

Generalized Many-Body Expanded Full Configuration Interaction Theory

2019

Facilitated by a rigorous partitioning of a molecular system's orbital basis into two fundamental subspaces - a reference and an expansion space, both with orbitals of unspecified occupancy - we generalize our recently introduced many-body expanded full configuration interaction (MBE-FCI) method to allow for electron-rich model and molecular systems dominated by both weak and strong correlation to be addressed. By employing minimal or even empty reference spaces, we show through calculations on the one-dimensional Hubbard model with up to 46 lattice sites, the chromium dimer, and the benzene molecule how near-exact results may be obtained in a entirely unbiased manner for chemical and physi…

Chemical Physics (physics.chem-ph)010304 chemical physicsBasis (linear algebra)Computer scienceFOS: Physical sciences010402 general chemistrySpace (mathematics)01 natural sciencesFull configuration interactionMany body0104 chemical sciencesTheoretical physicsAtomic orbitalPhysics - Chemical Physics0103 physical sciencesGeneral Materials ScienceAstrophysics::Earth and Planetary AstrophysicsPhysical and Theoretical Chemistry
researchProduct

Assessment of the accuracy of coupled cluster perturbation theory for open-shell systems. II. Quadruples expansions

2016

We extend our assessment of the potential of perturbative coupled cluster (CC) expansions for a test set of open-shell atoms and organic radicals to the description of quadruple excitations. Namely, the second- through sixth-order models of the recently proposed CCSDT(Q-n) quadruples series [J. Chem. Phys. 140, 064108 (2014)] are compared to the prominent CCSDT(Q) and lambda-CCSDT(Q) models. From a comparison of the models in terms of their recovery of total CC singles, doubles, triples, and quadruples (CCSDTQ) energies, we find that the performance of the CCSDT(Q-n) models is independent of the reference used (unrestricted or restricted (open-shell) Hartree-Fock), in contrast to the CCSDT(…

Chemical Physics (physics.chem-ph)010304 chemical physicsPhysics - Chemical Physics0103 physical sciencesFOS: Physical sciencesGeneral Physics and AstronomyPhysical and Theoretical Chemistry010402 general chemistry01 natural sciences0104 chemical sciencesThe Journal of Chemical Physics
researchProduct

Many-Body Expanded Full Configuration Interaction. II. Strongly Correlated Regime

2019

In this second part of our series on the recently proposed many-body expanded full configuration interaction (MBE-FCI) method, we introduce the concept of multideterminantal expansion references. Through theoretical arguments and numerical validations, the use of this class of starting points is shown to result in a focussed compression of the MBE decomposition of the FCI energy, thus allowing chemical problems dominated by strong correlation to be addressed by the method. The general applicability and performance enhancements of MBE-FCI are verified for standard stress tests such as the bond dissociations in H$_2$O, N$_2$, C$_2$, and a linear H$_{10}$ chain. Furthermore, the benefits of em…

Chemical Physics (physics.chem-ph)010304 chemical physicsThe RenaissanceFOS: Physical sciences010402 general chemistry01 natural sciencesFull configuration interactionMany body0104 chemical sciencesComputer Science ApplicationsFormalism (philosophy of mathematics)Physics - Chemical Physics0103 physical sciencesStatistical physicsPhysical and Theoretical ChemistryGround state
researchProduct

On the role of interfacial hydrogen bonds in "on-water" catalysis.

2014

Numerous experiments have demonstrated that many classes of organic reactions exhibit increased reaction rates when performed in heterogeneous water emulsions. Despite enormous practical importance of the observed "on-water" catalytic effect and several mechanistic studies, its microscopic origins remains unclear. In this work, the second generation Car-Parrinello molecular dynamics method is extended to self-consistent charge density-functional based tight-binding in order to study "on-water" catalysis of the Diels-Alder reaction between dimethyl azodicarboxylate and quadricyclane. We find that the stabilization of the transition state by dangling hydrogen bonds exposed at the aqueous inte…

Chemical Physics (physics.chem-ph)Aqueous solutionHydrogen bondGeneral Physics and AstronomyFOS: Physical sciencesCondensed Matter - Soft Condensed MatterPhotochemistryCatalysisReaction rateMolecular dynamicschemistry.chemical_compoundchemistryOrganic reactionBiological Physics (physics.bio-ph)Physics - Chemical PhysicsSoft Condensed Matter (cond-mat.soft)Density functional theoryPhysics - Biological PhysicsPhysical and Theoretical ChemistryQuadricyclaneThe Journal of chemical physics
researchProduct

Energy and radiative properties of the (3)1�� and (5)1��+ states of RbCs: Experiment and theory

2019

We combined high-resolution Fourier-transform spectroscopy and large-scale electronic structure calculation to study energy and radiative properties of the high-lying (3)1�� and (5)1��+ states of the RbCs molecule. The laser-induced (5)1��+(4)1��+(3)1��-A(2)1��+ b(1)3�� fluorescence (LIF) spectra were recorded by the Bruker IFS-125(HR) spectrometer in the frequency range �� 5500 to 10000cm-1 with the instrumental resolution of 0.03 cm-1. The rotational assignment of the observed LIF progressions, which exhibit irregular vibrational-rotational spacing due to strong spin-orbit interaction between A1��+ and b3(��) states was based on the coincidences between observed and calculated energy diff…

Chemical Physics (physics.chem-ph)Atomic Physics (physics.atom-ph)FOS: Physical sciences
researchProduct

Fourier-transform spectroscopy and relativistic electronic structure calculation on the $c^3��^+$ state of KCs

2021

The Ti:Saphire laser operated within 13800 - 11800 cm$^{-1}$ range was used to excite the $c^3��^+$ state of KCs molecule directly from the ground $X^1��^+$ state. The laser-induced fluorescence (LIF) spectra of the $c^3��^+ \rightarrow a^3��^+$ transition were recorded with Fourier-transform spectrometer within 8000 to 10000 cm$^{-1}$ range. Overall 673 rovibronic term values belonging to both $e/f$-components of the $c^3��^+(��=1^{\pm})$ state of $^{39}$KCs, covering vibrational levels from $v$ = 0 to about 45, and rotational levels $J\in [11,149]$ were determined with the accuracy of about 0.01 cm$^{-1}$; among them 7 values for $^{41}$KCs. The experimental term values with $v\in [0,22]$…

Chemical Physics (physics.chem-ph)Atomic Physics (physics.atom-ph)FOS: Physical sciencesComputational Physics (physics.comp-ph)
researchProduct