Search results for "physics.chem-ph"
showing 10 items of 359 documents
Photochemically induced dynamic nuclear polarization of heteronuclear singlet order
2021
Photochemically induced dynamic nuclear polarization (photo-CIDNP) is a method to hyperpolarize nuclear spins using light. In most cases, CIDNP experiments are performed in high magnetic fields and the sample is irradiated by light inside a nuclear magnetic resonance (NMR) spectrometer. Here we demonstrate photo-CIDNP hyperpolarization generated in the Earth's magnetic field and under zero- to ultralow-field (ZULF) conditions. Irradiating a sample containing tetraphenylporphyrin and para-benzoquinone for several seconds with light-emitting diodes produces strong hyperpolarization of 1H and 13C nuclear spins, enhancing the NMR signals more than 200 times. The hyperpolarized spin states at th…
Tin-DNA complexes investigated by nuclear inelastic scattering of synchrotron radiation
2005
Nuclear inelastic scattering (NIS) of synchrotron radiation has been used to investigate the dynamics of tin ions chelated by DNA. Theoretical NIS spectra have been simulated with the help of density functional theory (DFT) calculations using 12 models for different binding sites of the tin ion in (CH3)Sn(DNAPhosphate)2. The simulated spectra are compared with the measured spectrum of the tin-DNA complex.
A method for measurement of spin-spin couplings with sub-mHz precision using zero- to ultralow-field nuclear magnetic resonance.
2017
We present a method which allows for the extraction of physical quantities directly from zero- to ultralow-field nuclear magnetic resonance (ZULF NMR) data. A numerical density matrix evolution is used to simulate ZULF NMR spectra of several molecules in order to fit experimental data. The method is utilized to determine the indirect spin-spin couplings ($J$-couplings) in these, which is achieved with precision of $10^{-2}$--$10^{-4}$ Hz. The simulated and measured spectra are compared to earlier research. Agreement and precision improvement for most of the $J$-coupling estimates are achieved. The availability of an efficient, flexible fitting method for ZULF NMR enables a new generation of…
New Pressure-Induced Polymorphic Transitions of Anhydrous Magnesium Sulfate
2017
The effects of pressure on the crystal structure of the three known polymorphs of magnesium sulfate have been theoretically study by means of DFT calculations up to 45 GPa. We determined that at ambient conditions gamma MgSO4 is an unstable polymorph, which decompose into MgO and SO3, and that the response of the other two polymorphs to hydrostatic pressure is non isotropic. Additionally we found that at all pressures beta MgSO4 has a largest enthalpy than alpha MgSO4. This indicates that beta MgSO4 is thermodynamically unstable versus alpha MgSO4 and predicts the occurrence of a beta alpha phase transition under moderate compression. Our calculations also predict the existence under pressu…
Salt-induced microheterogeneities in binary liquid mixtures
2017
The salt-induced microheterogeneity (MH) formation in binary liquid mixtures is studied by small-angle x-ray scattering (SAXS) and liquid state theory. Previous experiments have shown that this phenomenon occurs for antagonistic salts, whose cations and anions prefer different components of the solvent mixture. However, so far the precise mechanism leading to the characteristic length scale of MHs has remained unclear. Here, it is shown that MHs can be generated by the competition of short-ranged interactions and long-ranged monopole-dipole interactions. The experimental SAXS patterns can be reproduced quantitatively by fitting to the derived correlation functions without assuming any speci…
Eliminating Artificial Boundary Conditions in Time-Dependent Density Functional Theory Using Fourier Contour Deformation
2023
We present an efficient method for propagating the time-dependent Kohn-Sham equations in free space, based on the recently introduced Fourier contour deformation (FCD) approach. For potentials which are constant outside a bounded domain, FCD yields a high-order accurate numerical solution of the time-dependent Schrödinger equation directly in free space, without the need for artificial boundary conditions. Of the many existing artificial boundary condition schemes, FCD is most similar to an exact nonlocal transparent boundary condition, but it works directly on Cartesian grids in any dimension, and runs on top of the fast Fourier transform rather than fast algorithms for the application of …
Enhanced Excitation Energy Transfer under Strong Light-Matter Coupling: Insights from Multi-Scale Molecular Dynamics Simulations
2022
Exciton transport can be enhanced in the strong coupling regime where excitons hybridise with confined light modes to form polaritons. Because polaritons have group velocity, their propagation should be ballistic and long-ranged. However, experiments indicate that organic polaritons propagate in a diffusive manner and more slowly than their group velocity. Here, we resolve this controversy by means of molecular dynamics simulations of Rhodamine molecules in a Fabry-P\'{e}rot cavity. Our results suggest that polariton propagation is limited by the cavity lifetime and appears diffusive due to reversible population transfers between polaritonic states that propagate ballistically at their grou…
Correlation-driven sub-3 fs charge migration in ionised adenine
2021
Sudden ionisation of a relatively large molecule can initiate a correlation-driven process dubbed charge migration, where the electron density distribution is expected to rapidly change. Capturing this few-femtosecond/attosecond charge redistribution represents the real-time observation of the electron correlation in the molecule. So far, there has been no experimental evidence of this process. Here we report on a time-resolved study of the correlation-driven charge migration process occurring in the bio-relevant molecule adenine after ionisation by a 15-35 eV attosecond pulse . We find that, the production of intact doubly charged adenine - via a shortly-delayed laser-induced second ionisa…
Hyperpolarization of cis-15N,15N'-azobenzene by parahydrogen at ultralow magnetic fields
2021
Development of the methods to exploit nuclear hyperpolarization and search for molecules whose nuclear spins can be efficiently hyperpolarized is an active area in nuclear magnetic resonance. Of particular interest are those molecules that have long nuclear relaxation times, making them to be suitable candidates as contrast agents in magnetic resonance imaging. In this work, we present a detailed study of SABRE SHEATH (Signal Amplification By Reversible Exchange in Shield Enabled Alignment Transfer to Heteronuclei) experiments of 15N,15N' azobenzene. In SABRE SHEATH experiments nuclear spins of the target are hyperpolarized by transfer of spin polarization from parahydrogen at ultralow fiel…
Assessment of the Performance of DFT Functionals Using Off-Diagonal Hypervirial Relationships
2021
Off-diagonal hypervirial relationships, combined with quantum mechanical sum rules of charge-current conservation, offer a way for testing electronic excited-state transition energies and moments, which does not need any external reference. A number of fundamental relations were recast into absolute deviations from zero, which have been used to assess the performance of some popular DFT functionals. Extended TD-DFT calculations have been carried out for a pool of molecules chosen to the purpose, adopting a large basis set to ensure high quality results. A general agreement with previous benchmarks is observed.