Search results for "physics.comp-ph"

showing 10 items of 115 documents

Quantitative analysis of numerical estimates for the permeability of porous media from lattice-Boltzmann simulations

2010

During the last decade, lattice-Boltzmann (LB) simulations have been improved to become an efficient tool for determining the permeability of porous media samples. However, well known improvements of the original algorithm are often not implemented. These include for example multirelaxation time schemes or improved boundary conditions, as well as different possibilities to impose a pressure gradient. This paper shows that a significant difference of the calculated permeabilities can be found unless one uses a carefully selected setup. We present a detailed discussion of possible simulation setups and quantitative studies of the influence of simulation parameters. We illustrate our results b…

Statistics and ProbabilityMaterials scienceSignificant differenceFluid Dynamics (physics.flu-dyn)Lattice Boltzmann methodsFOS: Physical sciencesStatistical and Nonlinear PhysicsPhysics - Fluid DynamicsMechanicsComputational Physics (physics.comp-ph)Permeability (earth sciences)Permeability measurementsBoundary value problemStatistics Probability and UncertaintyPorous mediumPhysics - Computational PhysicsPressure gradient
researchProduct

WENO schemes applied to the quasi-relativistic Vlasov-Maxwell model for laser-plasma interaction

2014

Abstract In this paper we focus on WENO-based methods for the simulation of the 1D Quasi-Relativistic Vlasov–Maxwell (QRVM) model used to describe how a laser wave interacts with and heats a plasma by penetrating into it. We propose several non-oscillatory methods based on either Runge–Kutta (explicit) or Time-Splitting (implicit) time discretizations. We then show preliminary numerical experiments.

Strategy and ManagementFOS: Physical sciences010103 numerical & computational mathematics01 natural scienceslaw.inventionMathematics::Numerical Analysislaser-plasma interactionMathematics - Analysis of PDEslawMedia TechnologyFOS: MathematicsVlasov--Maxwell[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP]General Materials ScienceMathematics - Numerical Analysis0101 mathematicsMarketingPhysicsPhysics::Computational PhysicsWENOPlasmaNumerical Analysis (math.NA)Computational Physics (physics.comp-ph)LaserRunge--Kutta schemes010101 applied mathematicsClassical mechanicsStrang splittingFocus (optics)Physics - Computational PhysicsAnalysis of PDEs (math.AP)Strang splitting
researchProduct

Anhamonic finite temperature effects on the Raman and Infrared spectra to determine the crystal structure phase III of solid molecular hydrogen

2013

We present theoretical calculations of the Raman and IR spectra, as well as electronic properties at zero and finite temperature to elucidate the crystal structure of phase III of solid molecular hydrogen. We find that anharmonic finite temperature are particularly important and qualitatively influences the main conclusions. While P6$_3$/m is the most likely candidate for phase III at the nuclear ground state, at finite temperature the C2/c structure appears to be more suitable.

Superconductivity (cond-mat.supr-con)Chemical Physics (physics.chem-ph)Condensed Matter - Other Condensed MatterCondensed Matter - Materials ScienceCondensed Matter - SuperconductivityPhysics - Chemical PhysicsMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciencesComputational Physics (physics.comp-ph)Physics - Computational PhysicsOther Condensed Matter (cond-mat.other)
researchProduct

Structure and Dynamics of the Instantaneous Water/Vapor Interface Revisited by Path-Integral and Ab Initio Molecular Dynamics Simulations

2015

The structure and dynamics of the water/vapor interface is revisited by means of path-integral and second-generation Car-Parrinello ab-initio molecular dynamics simulations in conjunction with an instantaneous surface definition [A. P. Willard and D. Chandler, J. Phys. Chem. B 114, 1954 (2010)]. In agreement with previous studies, we find that one of the OH bonds of the water molecules in the topmost layer is pointing out of the water into the vapor phase, while the orientation of the underlying layer is reversed. Therebetween, an additional water layer is detected, where the molecules are aligned parallel to the instantaneous water surface.

Surface (mathematics)KineticsFOS: Physical sciencesMolecular Dynamics SimulationCondensed Matter - Soft Condensed MatterMolecular physicsMolecular dynamicsPhysics - Chemical PhysicsMaterials ChemistryMoleculePhysical and Theoretical ChemistryCondensed Matter - Statistical MechanicsPhysics::Atmospheric and Oceanic PhysicsChemical Physics (physics.chem-ph)Statistical Mechanics (cond-mat.stat-mech)Molecular StructureChemistryHydrogen bondWaterHydrogen BondingComputational Physics (physics.comp-ph)Surfaces Coatings and FilmsKineticsSteamPath integral formulationSoft Condensed Matter (cond-mat.soft)Physical chemistryPhysics - Computational PhysicsLayer (electronics)Water vaporThe Journal of Physical Chemistry B
researchProduct

Does Young's equation hold on the nanoscale? A Monte Carlo test for the binary Lennard-Jones fluid

2010

When a phase-separated binary ($A+B$) mixture is exposed to a wall, that preferentially attracts one of the components, interfaces between A-rich and B-rich domains in general meet the wall making a contact angle $\theta$. Young's equation describes this angle in terms of a balance between the $A-B$ interfacial tension $\gamma_{AB}$ and the surface tensions $\gamma_{wA}$, $\gamma_{wB}$ between, respectively, the $A$- and $B$-rich phases and the wall, $\gamma _{AB} \cos \theta =\gamma_{wA}-\gamma_{wB}$. By Monte Carlo simulations of bridges, formed by one of the components in a binary Lennard-Jones liquid, connecting the two walls of a nanoscopic slit pore, $\theta$ is estimated from the inc…

Surface (mathematics)PhysicsCondensed matter physicsStatistical Mechanics (cond-mat.stat-mech)Monte Carlo methodGeneral Physics and AstronomyThermodynamic integrationFOS: Physical sciencesComputational Physics (physics.comp-ph)Contact angleSurface tensionPhysics::Fluid DynamicsDistribution functionWetting transitionPhysics - Computational PhysicsScalingCondensed Matter - Statistical Mechanics
researchProduct

Parallelization of adaptive MC integrators

1997

Monte Carlo (MC) methods for numerical integration seem to be embarassingly parallel on first sight. When adaptive schemes are applied in order to enhance convergence however, the seemingly most natural way of replicating the whole job on each processor can potentially ruin the adaptive behaviour. Using the popular VEGAS-Algorithm as an example an economic method of semi-micro parallelization with variable grain-size is presented and contrasted with another straightforward approach of macro-parallelization. A portable implementation of this semi-micro parallelization is used in the xloops-project and is made publicly available.

Variable (computer science)Hardware and ArchitectureComputer scienceAdaptive behaviourIntegratorMonte Carlo methodConvergence (routing)FOS: Physical sciencesGeneral Physics and AstronomyParallel computingComputational Physics (physics.comp-ph)Physics - Computational PhysicsNumerical integrationComputer Physics Communications
researchProduct

Structure and Dynamics of the Quasi-Liquid Layer at the Surface of Ice from Molecular Simulations

2018

We characterized the structural and dynamical properties of the quasi-liquid layer (QLL) at the surface of ice by molecular dynamics simulations with a thermodynamically consistent water model. Our simulations show that for three low-index ice surfaces only the outermost molecular layer presents short-range and mid-range disorder and is diffusive. The onset temperature for normal diffusion is much higher than the glass temperature of supercooled water, although the diffusivity of the QLL is higher than that of bulk water at the corresponding temperature. The underlying subsurface layers impose an ordered template, which produces a regular patterning of the ice/water interface at any tempera…

Work (thermodynamics)TechnologyMaterials sciencephysics.chem-phFOS: Physical sciencesCondensed Matter - Soft Condensed Matter010402 general chemistryThermal diffusivity01 natural sciencesPhysical ChemistryMolecular dynamicsEngineeringPhysics - Chemical Physics0103 physical sciencesWater modelPhysical and Theoretical Chemistry010306 general physicsSupercoolingPhysics::Atmospheric and Oceanic PhysicsChemical Physics (physics.chem-ph)cond-mat.softComputational Physics (physics.comp-ph)0104 chemical sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsCharacterization (materials science)General EnergyChemical physicsphysics.comp-phChemical SciencesSoft Condensed Matter (cond-mat.soft)Glass transitionLayer (electronics)Physics - Computational Physics
researchProduct

Shaken Snow Globes: Kinematic Tracers of the Multiphase Condensation Cascade in Massive Galaxies, Groups, and Clusters

2018

We propose a novel method to constrain turbulence and bulk motions in massive galaxies, groups and clusters, exploring both simulations and observations. As emerged in the recent picture of the top-down multiphase condensation, the hot gaseous halos are tightly linked to all other phases in terms of cospatiality and thermodynamics. While hot halos (10^7 K) are perturbed by subsonic turbulence, warm (10^4 K) ionized and neutral filaments condense out of the turbulent eddies. The peaks condense into cold molecular clouds (< 100 K) raining in the core via chaotic cold accretion (CCA). We show all phases are tightly linked via the ensemble (wide-aperture) velocity dispersion along the line o…

[ PHYS.ASTR ] Physics [physics]/Astrophysics [astro-ph]Astrophysics01 natural sciencesSpectral lineGalaxy groupAbsorption (logic)010303 astronomy & astrophysicsLine (formation)hydrodynamicPhysicsastro-ph.HEHigh Energy Astrophysical Phenomena (astro-ph.HE)Velocity dispersionPhysics - Fluid DynamicsComputational Physics (physics.comp-ph)active [galaxies]astro-ph.COspectroscopic [techniques]Astrophysics - High Energy Astrophysical PhenomenaPhysics - Computational PhysicsAstrophysics - Cosmology and Nongalactic Astrophysics[ INFO ] Computer Science [cs]Cosmology and Nongalactic Astrophysics (astro-ph.CO)astro-ph.GAgalaxies: activeFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic AstrophysicsISM [radio lines]0103 physical sciences[ PHYS.PHYS.PHYS-GEN-PH ] Physics [physics]/Physics [physics]/General Physics [physics.gen-ph]/dk/atira/pure/subjectarea/asjc/1900/1912[INFO]Computer Science [cs]Astrophysics::Galaxy Astrophysicsradio lines: ISM010308 nuclear & particles physicsMolecular cloudturbulenceFluid Dynamics (physics.flu-dyn)Astronomy and AstrophysicsAstronomy and AstrophysicAstrophysics - Astrophysics of GalaxiesX-rays: galaxies: clusterGalaxyAccretion (astrophysics)[PHYS.PHYS.PHYS-GEN-PH]Physics [physics]/Physics [physics]/General Physics [physics.gen-ph]physics.flu-dynphysics.comp-phSpace and Planetary ScienceX-rays: galaxies: clustersAstrophysics of Galaxies (astro-ph.GA)hydrodynamics/dk/atira/pure/subjectarea/asjc/3100/3103galaxies: clusters [X-rays][PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]techniques: spectroscopic
researchProduct

Temporal coherence in mirrorless optical parametric oscillators

2012

International audience; One of the unique features of mirrorless optical parametric oscillators based on counterpropagating three-wave interactions is the narrow spectral width of the wave generated in the backward direction. In this work, we in- vestigate experimentally and numerically the influence that a strong phase modulation in the pump has on the spectral bandwidths of the parametric waves and on the efficiency of the nonlinear interaction. The effects of group-velocity mismatch and group-velocity dispersion are elucidated. In particular, it is shown that the substan- tial increase in temporal coherence of the backward-generated wave can be obtained even for pumping with a temporally…

[PHYS.PHYS.PHYS-OPTICS] Physics [physics]/Physics [physics]/Optics [physics.optics][SPI.OPTI] Engineering Sciences [physics]/Optics / Photonic[PHYS.PHYS.PHYS-COMP-PH] Physics [physics]/Physics [physics]/Computational Physics [physics.comp-ph]030.1640 190.4410 190.4970 230.4320.Physics::Optics01 natural sciences[PHYS.PHYS.PHYS-COMP-PH]Physics [physics]/Physics [physics]/Computational Physics [physics.comp-ph]010309 opticsOptics[ PHYS.PHYS.PHYS-COMP-PH ] Physics [physics]/Physics [physics]/Computational Physics [physics.comp-ph]Fiber laser0103 physical sciencesSpectral width010306 general physicsParametric statisticsPhysics[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics][ PHYS.PHYS.PHYS-OPTICS ] Physics [physics]/Physics [physics]/Optics [physics.optics]business.industryQuantum noiseSecond-harmonic generationStatistical and Nonlinear PhysicsOptical parametric amplifierAtomic and Molecular Physics and Optics[SPI.OPTI]Engineering Sciences [physics]/Optics / Photonic[ SPI.OPTI ] Engineering Sciences [physics]/Optics / PhotonicbusinessPhase modulationCoherence (physics)Journal of the Optical Society of America B
researchProduct

Time-dependent screening explains the ultrafast excitonic signal rise in 2D semiconductors

2020

We calculate the time evolution of the transient reflection signal in an MoS$_2$ monolayer on a SiO$_2$/Si substrate using first-principles out-of-equilibrium real-time methods. Our simulations provide a simple and intuitive physical picture for the delayed, yet ultrafast, evolution of the signal whose rise time depends on the excess energy of the pump laser: at laser energies above the A- and B-exciton, the pump pulse excites electrons and holes far away from the K valleys in the first Brillouin zone. Electron-phonon and hole-phonon scattering lead to a gradual relaxation of the carriers towards small $\textit{Active Excitonic Regions}$ around K, enhancing the dielectric screening. The acc…

ab-initio many-body perturbation theoryMaterials scienceExciton: Physics [G04] [Physical chemical mathematical & earth Sciences]General Physics and AstronomyFOS: Physical sciences02 engineering and technology010402 general chemistry01 natural sciencesSignalCondensed Matter::Materials ScienceMonolayerGeneral Materials ScienceCondensed Matter - Materials Sciencebusiness.industryGeneral EngineeringTime evolutionMaterials Science (cond-mat.mtrl-sci)Computational Physics (physics.comp-ph)021001 nanoscience & nanotechnologytime-dependent spectroscopy0104 chemical sciencesReflection (mathematics)Semiconductor: Physique [G04] [Physique chimie mathématiques & sciences de la terre]OptoelectronicsTransient (oscillation)0210 nano-technologybusinessUltrashort pulsePhysics - Computational Physicsexciton-phonon couplingPhysics - OpticsOptics (physics.optics)
researchProduct