Search results for "physics.comp-ph"

showing 10 items of 115 documents

Inverse simulated annealing for the determination of amorphous structures

2013

We present a new and efficient optimization method to determine the structure of disordered systems in agreement with available experimental data. Our approach permits the application of accurate electronic structure calculations within the structure optimization. The new technique is demonstrated within density functional theory by the calculation of a model of amorphous carbon.

Chemical Physics (physics.chem-ph)Condensed Matter - Materials ScienceMaterials scienceStatistical Mechanics (cond-mat.stat-mech)Structure (category theory)Experimental dataInverseMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciencesElectronic structureDisordered Systems and Neural Networks (cond-mat.dis-nn)Computational Physics (physics.comp-ph)Condensed Matter - Disordered Systems and Neural NetworksCondensed Matter PhysicsMolecular physicsElectronic Optical and Magnetic MaterialsAmorphous solidAmorphous carbonPhysics - Chemical PhysicsSimulated annealingDensity functional theoryPhysics - Computational PhysicsCondensed Matter - Statistical Mechanics
researchProduct

A Composite Phononic Crystal Design for Quasiparticle Lifetime Enhancement in Kinetic Inductance Detectors

2019

A nanoscale phononic crystal filter (reflector) is designed for a kinetic inductance detector where the reflection band is matched to the quasiparticle recombination phonons with the aim to increase quasiparticle lifetime in the superconducting resonator. The inductor is enclosed by a 1 um wide phononic crystal membrane section with two simple hole patterns that each contain a partial spectral gap for various high frequency phonon modes. The phononic crystal is narrow enough for low frequency thermal phonons to propagate unimpeded. With 3D phonon scattering simulations over a 40 dB attenuation in transmitted power is found for the crystal, which was previously estimated to give a lifetime e…

Materials sciencePhysics - Instrumentation and DetectorsPhononFOS: Physical sciences02 engineering and technology01 natural sciencesCrystalResonatorCondensed Matter::Materials ScienceCondensed Matter::Superconductivity0103 physical sciencesGeneral Materials Science010306 general physicsSuperconductivityCondensed matter physicsPhonon scatteringAttenuationInstrumentation and Detectors (physics.ins-det)Computational Physics (physics.comp-ph)021001 nanoscience & nanotechnologyCondensed Matter PhysicsCondensed Matter::Mesoscopic Systems and Quantum Hall EffectCrystal filterAtomic and Molecular Physics and OpticsQuasiparticleCondensed Matter::Strongly Correlated Electrons0210 nano-technologyPhysics - Computational Physics
researchProduct

A meshless method for compressible flows with the HLLC Riemann solver

2014

The HLLC Riemann solver, which resolves both the shock waves and contact discontinuities, is popular to the computational fluid dynamics community studying compressible flow problems with mesh methods. Although it was reported to be used in meshless methods, the crucial information and procedure to realise this scheme within the framework of meshless methods were not clarified fully. Moreover, the capability of the meshless HLLC solver to deal with compressible liquid flows is not completely clear yet as very few related studies have been reported. Therefore, a comprehensive investigation of a dimensional non-split HLLC Riemann solver for the least-square meshless method is carried out in t…

Fluid Dynamics (physics.flu-dyn)FOS: Physical sciencesPhysics - Fluid DynamicsComputational Physics (physics.comp-ph)Physics - Computational Physics
researchProduct

Nucleon matrix elements from lattice QCD with all-mode-averaging and a domain-decomposed solver: An exploratory study

2017

We study the performance of all-mode-averaging (AMA) when used in conjunction with a locally deflated SAP-preconditioned solver, determining how to optimize the local block sizes and number of deflation fields in order to minimize the computational cost for a given level of overall statistical accuracy. We find that AMA enables a reduction of the statistical error on nucleon charges by a factor of around two at the same cost when compared to the standard method. As a demonstration, we compute the axial, scalar and tensor charges of the nucleon in $N_f=2$ lattice QCD with non-perturbatively O(a)-improved Wilson quarks, using O(10,000) measurements to pursue the signal out to source-sink sepa…

QuarkPhysicsNuclear and High Energy PhysicsParticle physics010308 nuclear & particles physicsHigh Energy Physics - Lattice (hep-lat)Scalar (physics)FOS: Physical sciencesCharge (physics)Lattice QCDComputational Physics (physics.comp-ph)Solver01 natural sciencesMatrix (mathematics)High Energy Physics - Lattice13. Climate actionQuantum electrodynamics0103 physical scienceslcsh:QC770-798ddc:530lcsh:Nuclear and particle physics. Atomic energy. RadioactivityTensor010306 general physicsNucleonPhysics - Computational PhysicsNuclear Physics B
researchProduct

Quantum dynamics by the constrained adiabatic trajectory method

2011

We develop the constrained adiabatic trajectory method (CATM) which allows one to solve the time-dependent Schr\"odinger equation constraining the dynamics to a single Floquet eigenstate, as if it were adiabatic. This constrained Floquet state (CFS) is determined from the Hamiltonian modified by an artificial time-dependent absorbing potential whose forms are derived according to the initial conditions. The main advantage of this technique for practical implementation is that the CFS is easy to determine even for large systems since its corresponding eigenvalue is well isolated from the others through its imaginary part. The properties and limitations of the CATM are explored through simple…

Floquet theoryQuantum dynamicsFOS: Physical sciences01 natural sciencesSchrödinger equationsymbols.namesakePhysics - Chemical PhysicsQuantum mechanics0103 physical sciences010306 general physicsAdiabatic processChemical Physics (physics.chem-ph)Physics[PHYS]Physics [physics]Quantum PhysicsPartial differential equation010304 chemical physicsComputational Physics (physics.comp-ph)Adiabatic quantum computationAtomic and Molecular Physics and OpticsClassical mechanicssymbolsQuantum Physics (quant-ph)Spectral methodHamiltonian (quantum mechanics)Physics - Computational Physics
researchProduct

A New Three-Dimensional Track Fit with Multiple Scattering

2017

Modern semiconductor detectors allow for charged particle tracking with ever increasing position resolution. Due to the reduction of the spatial hit uncertainties, multiple Coulomb scattering in the detector layers becomes the dominant source for tracking uncertainties. In this case long distance effects can be ignored for the momentum measurement, and the track fit can consequently be formulated as a sum of independent fits to hit triplets. In this paper we present an analytical solution for a three-dimensional triplet(s) fit in a homogeneous magnetic field based on a multiple scattering model. Track fitting of hit triplets is performed using a linearization ansatz. The momentum resolution…

Nuclear and High Energy PhysicsPhysics - Instrumentation and DetectorsFOS: Physical sciencesTracking (particle physics)01 natural sciencesHigh Energy Physics - Experimentlaw.inventionMomentumHigh Energy Physics - Experiment (hep-ex)OpticsLinearizationlaw0103 physical sciences010306 general physicsColliderInstrumentationAnsatzPhysicsSpectrometer010308 nuclear & particles physicsScatteringbusiness.industryDetectorInstrumentation and Detectors (physics.ins-det)Computational Physics (physics.comp-ph)Computational physicsPhysics - Data Analysis Statistics and ProbabilitybusinessPhysics - Computational PhysicsData Analysis Statistics and Probability (physics.data-an)
researchProduct

PenRed: An extensible and parallel Monte-Carlo framework for radiation transport based on PENELOPE

2021

Monte Carlo methods provide detailed and accurate results for radiation transport simulations. Unfortunately, the high computational cost of these methods limits its usage in real-time applications. Moreover, existing computer codes do not provide a methodology for adapting these kind of simulations to specific problems without advanced knowledge of the corresponding code system, and this restricts their applicability. To help solve these current limitations, we present PenRed, a general-purpose, stand-alone, extensible and modular framework code based on PENELOPE for parallel Monte Carlo simulations of electron-photon transport through matter. It has been implemented in C++ programming lan…

Parallel computingPhysics - Instrumentation and DetectorsAtomic Physics (physics.atom-ph)FortranRadiation transportFOS: Physical sciencesGeneral Physics and AstronomyParallel computingcomputer.software_genre01 natural sciencesPhysics - Atomic Physics010305 fluids & plasmasElectron-photon showers0103 physical sciencesCIENCIAS DE LA COMPUTACION E INTELIGENCIA ARTIFICIAL010306 general physicsMonte Carlo simulationcomputer.programming_languageMPICHbusiness.industryInstrumentation and Detectors (physics.ins-det)Construct (python library)Computational Physics (physics.comp-ph)Modular designPhysics - Medical PhysicsShared memoryHardware and ArchitectureProgramming paradigmDistributed memoryMPIMedical Physics (physics.med-ph)CompilerMedical physicsbusinessPhysics - Computational Physicscomputer
researchProduct

An efficient dissipative particle dynamics-based algorithm for simulating electrolyte solutions

2015

We propose an efficient simulation algorithm based on the dissipative particle dynamics (DPD) method for studying electrohydrodynamic phenomena in electrolyte fluids. The fluid flow is mimicked with DPD particles while the evolution of the concentration of the ionic species is described using Brownian pseudo particles. The method is designed especially for systems with high salt concentrations, as explicit treatment of the salt ions becomes computationally expensive. For illustration, we apply the method to electro-osmotic flow over patterned, superhydrophobic surfaces. The results are in good agreement with recent theoretical predictions.

Models MolecularOsmosisMaterials scienceSurface PropertiesGeneral Physics and AstronomyIonic bondingFOS: Physical sciencesElectrolyteCondensed Matter - Soft Condensed MatterIonPhysics::Fluid DynamicsElectrolytesFluid dynamicsPhysical and Theoretical ChemistryBrownian motionDissipative particle dynamicsFluid Dynamics (physics.flu-dyn)MechanicsPhysics - Fluid DynamicsComputational Physics (physics.comp-ph)SolutionsCondensed Matter::Soft Condensed MatterFlow (mathematics)HydrodynamicsSoft Condensed Matter (cond-mat.soft)SaltsElectrohydrodynamicsPhysics - Computational PhysicsHydrophobic and Hydrophilic InteractionsAlgorithms
researchProduct

Imaginary time propagation code for large-scale two-dimensional eigenvalue problems in magnetic fields

2013

We present a code for solving the single-particle, time-independent Schr\"odinger equation in two dimensions. Our program utilizes the imaginary time propagation (ITP) algorithm, and it includes the most recent developments in the ITP method: the arbitrary order operator factorization and the exact inclusion of a (possibly very strong) magnetic field. Our program is able to solve thousands of eigenstates of a two-dimensional quantum system in reasonable time with commonly available hardware. The main motivation behind our work is to allow the study of highly excited states and energy spectra of two-dimensional quantum dots and billiard systems with a single versatile code, e.g., in quantum …

NetlibSource codeta114Computer sciencemedia_common.quotation_subjectFOS: Physical sciencesGeneral Physics and AstronomyByteComputational Physics (physics.comp-ph)Python (programming language)computer.software_genreImaginary timeComputational scienceHardware and ArchitectureREADMECompilerPhysics - Computational PhysicscomputerAlgorithmmedia_commonTest datacomputer.programming_languageComputer Physics Communications
researchProduct

Simulating spin models on GPU

2010

Over the last couple of years it has been realized that the vast computational power of graphics processing units (GPUs) could be harvested for purposes other than the video game industry. This power, which at least nominally exceeds that of current CPUs by large factors, results from the relative simplicity of the GPU architectures as compared to CPUs, combined with a large number of parallel processing units on a single chip. To benefit from this setup for general computing purposes, the problems at hand need to be prepared in a way to profit from the inherent parallelism and hierarchical structure of memory accesses. In this contribution I discuss the performance potential for simulating…

Statistical Mechanics (cond-mat.stat-mech)Computer scienceHigh Energy Physics - Lattice (hep-lat)Monte Carlo methodFOS: Physical sciencesGeneral Physics and AstronomyParallel computingComputational Physics (physics.comp-ph)Power (physics)CUDAHigh Energy Physics - LatticeParallel processing (DSP implementation)Hardware and ArchitectureParallelism (grammar)Ising modelGraphicsPhysics - Computational PhysicsVideo gameCondensed Matter - Statistical MechanicsComputer Physics Communications
researchProduct