Search results for "physics.plasm-ph"

showing 10 items of 48 documents

Particle energization in colliding subcritical collisionless shocks investigated in the laboratory

2022

Context. Colliding collisionless shocks appear across a broad variety of astrophysical phenomena and are thought to be possible sources of particle acceleration in the Universe. Aims. The main goal of our experimental and computational work is to understand the effect of the interpenetration between two subcritical collisionless shocks on particle energization. Methods. To investigate the detailed dynamics of this phenomenon, we performed a dedicated laboratory experiment. We generated two counter-streaming subcritical collisionless magnetized shocks by irradiating two Teflon (C2F4) targets with 100 J, 1 ns laser beams on the LULI2000 laser facility. The interaction region between the plasm…

Plasma Physics (physics.plasm-ph)Settore FIS/05 - Astronomia E Astrofisica[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph][SDU]Sciences of the Universe [physics]Space and Planetary ScienceAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstronomy and Astrophysicsshock wavesinterplanetary mediumPhysics - Plasma Physicsacceleration of particles
researchProduct

Investigating particle acceleration dynamics in interpenetrating magnetized collisionless super-critical shocks

2023

Colliding collisionless shocks appear in a great variety of astrophysical phenomena and are thought to be possible sources of particle acceleration in the Universe. We have previously investigated particle acceleration induced by single super-critical shocks (whose magnetosonic Mach number is higher than the critical value of 2.7) (Yao et al., Nat. Phys., vol. 17, issue 10, 2021, pp. 1177–1182; Yao et al., Matter Radiat. Extrem., vol. 7, issue 1, 2022, 014402), as well as the collision of two sub-critical shocks (Fazzini et al., Astron. Astrophys., vol. 665, 2022, A87). Here, we propose to make measurements of accelerated particles from interpenetrating super-critical shocks to observe the …

Plasma Physics (physics.plasm-ph)Settore FIS/05 - Astronomia E Astrofisicaplasma simulationFOS: Physical sciencesCondensed Matter Physics[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]plasma nonlinear phenomenaPhysics - Plasma Physics[PHYS.PHYS.PHYS-GEN-PH]Physics [physics]/Physics [physics]/General Physics [physics.gen-ph]
researchProduct

Laboratory disruption of scaled astrophysical outflows by a misaligned magnetic field

2021

The shaping of astrophysical outflows into bright, dense, and collimated jets due to magnetic pressure is here investigated using laboratory experiments. Here we look at the impact on jet collimation of a misalignment between the outflow, as it stems from the source, and the magnetic field. For small misalignments, a magnetic nozzle forms and redirects the outflow in a collimated jet. For growing misalignments, this nozzle becomes increasingly asymmetric, disrupting jet formation. Our results thus suggest outflow/magnetic field misalignment to be a plausible key process regulating jet collimation in a variety of objects from our Sun’s outflows to extragalatic jets. Furthermore, they provide…

ScienceAstrophysics::High Energy Astrophysical PhenomenaNozzleoutflows magnetohydrodynamics(MHD) shockwaves astrophysical jetsGeneral Physics and AstronomyFOS: Physical sciencesAstrophysics01 natural sciencesArticleGeneral Biochemistry Genetics and Molecular BiologyCollimated lightSettore FIS/05 - Astronomia E AstrofisicaAmbient field0103 physical sciencesAstrophysics::Solar and Stellar AstrophysicsMagnetic pressure010306 general physics010303 astronomy & astrophysicsSolar and Stellar Astrophysics (astro-ph.SR)Astrophysics::Galaxy AstrophysicsLaboratory astrophysicsPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Jet (fluid)MultidisciplinaryQLaser-produced plasmasGeneral ChemistryPhysics - Plasma PhysicsMagnetic fieldPlasma Physics (physics.plasm-ph)Astrophysics - Solar and Stellar AstrophysicsPhysics::Accelerator PhysicsOutflowHigh Energy Physics::ExperimentAstrophysics - High Energy Astrophysical Phenomena[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
researchProduct

Laboratory evidence for proton energization by collisionless shock surfing

2021

Charged particles can be accelerated to high energies by collisionless shock waves in astrophysical environments, such as supernova remnants. By interacting with the magnetized ambient medium, these shocks can transfer energy to particles. Despite increasing efforts in the characterization of these shocks from satellite measurements at Earth’s bow shock as well as powerful numerical simulations, the underlying acceleration mechanism or a combination thereof is still widely debated. Here we show that astrophysically relevant super-critical quasi-perpendicular magnetized collisionless shocks can be produced and characterized in the laboratory. We observe the characteristics of super-criticali…

Shock waveProtonAstrophysics::High Energy Astrophysical PhenomenaGeneral Physics and AstronomyFOS: Physical sciences01 natural sciencesAccelerationSettore FIS/05 - Astronomia E Astrofisica0103 physical sciencesBow shock (aerodynamics)010306 general physics010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsPhysicsMechanicsplasmasPhysics - Plasma PhysicsCharged particleComputer Science::Computers and Society[PHYS.PHYS.PHYS-GEN-PH]Physics [physics]/Physics [physics]/General Physics [physics.gen-ph]Magnetic fieldShock (mechanics)Plasma Physics (physics.plasm-ph)Supernova13. Climate actionPhysics::Space PhysicsPhysics::Accelerator Physics
researchProduct

Production of highly charged ions of rare species by laser-induced desorption inside an electron beam ion trap

2019

This paper reports on the development and testing of a novel, highly efficient technique for the injection of very rare species into electron beam ion traps (EBITs) for the production of highly charged ions (HCI). It relies on in-trap laser-induced desorption of atoms from a sample brought very close to the electron beam resulting in a very high capture efficiency in the EBIT. We have demonstrated a steady production of HCI of the stable isotope 165Ho from samples of only 1012 atoms (∼300 pg) in charge states up to 45+. HCI of these species can be subsequently extracted for use in other experiments or stored in the trapping volume of the EBIT for spectroscopic measurements. The high efficie…

Speichertechnik - Abteilung BlaumMaterials scienceAtomic Physics (physics.atom-ph)Electron captureElectronvoltFOS: Physical scienceschemistry.chemical_element01 natural sciences7. Clean energyPhysics - Atomic Physics010305 fluids & plasmasIon0103 physical sciencesPhysics::Atomic PhysicsInstrumentation010302 applied physicsRange (particle radiation)Stable isotope ratioPhysics - Plasma PhysicsAtomic massPlasma Physics (physics.plasm-ph)chemistryddc:620Atomic physicsHolmiumElectron beam ion trapReview of Scientific Instruments
researchProduct

Tracing the ICME plasma with a MHD simulation

2021

The determination of the chemical composition of interplanetary coronal mass ejection (ICME) plasma is an open issue. More specifically, it is not yet fully understood how remote sensing observations of the solar corona plasma during solar disturbances evolve into plasma properties measured in situ away from the Sun. The ambient conditions of the background interplanetary plasma are important for space weather because they influence the evolutions, arrival times, and geo-effectiveness of the disturbances. The Reverse In situ and MHD APproach (RIMAP) is a technique to reconstruct the heliosphere on the ecliptic plane (including the magnetic Parker spiral) directly from in situ measurements a…

Sun: coronal mass ejections (CMEs)FOS: Physical sciencesInterplanetary mediumAstrophysicsSpace weathermagnetohydrodynamics (MHD)Physics - Space PhysicsPhysics::Plasma PhysicsAstrophysics::Solar and Stellar AstrophysicsSun: abundancesSolar and Stellar Astrophysics (astro-ph.SR)PhysicsAstronomy and AstrophysicsPlasmasolar-terrestrial relationsSpace Physics (physics.space-ph)Physics - Plasma PhysicsComputational physicsPlasma Physics (physics.plasm-ph)Solar windAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary SciencePhysics::Space PhysicsHeliospheric current sheetMagnetohydrodynamicsInterplanetary spaceflightHeliosphere
researchProduct

Simulating pump-probe photo-electron and absorption spectroscopy on the attosecond time-scale with time-dependent density-functional theory

2013

Molecular absorption and photoelectron spectra can be efficiently predicted with real-time time-dependent density functional theory. We show herein how these techniques can be easily extended to study time-resolved pump-probe experiments, in which a system response (absorption or electron emission) to a probe pulse is measured in an excited state. This simulation tool helps with the interpretation of fast-evolving attosecond time-resolved spectroscopic experiments, in which electronic motion must be followed at its natural timescale. We show how the extra degrees of freedom (pump-pulse duration, intensity, frequency, and time delay), which are absent in a conventional steady-state experimen…

Time-resolved spectroscopyTime FactorsAbsorption spectroscopyAtomic Physics (physics.atom-ph)AttosecondAttosecond dynamicsFOS: Physical sciencesPump probesingle-molecule studies01 natural sciencestime-resolved spectroscopySettore FIS/03 - Fisica Della MateriaPhysics - Atomic PhysicsAb initio quantum chemistry methodsPhysics - Chemical Physics0103 physical sciencesPhysics - Atomic and Molecular ClustersLaser spectroscopyPhysical and Theoretical Chemistry010306 general physicsSpectroscopyPhysicsChemical Physics (physics.chem-ph)010304 chemical physicsEuropean researchab initio calculationsPhotoelectron SpectroscopySingle-molecule studiesattosecond dynamicsTime-dependent density functional theoryAtomic and Molecular Physics and OpticsPhysics - Plasma PhysicsPlasma Physics (physics.plasm-ph)X-Ray Absorption Spectroscopylaser spectroscopyQuantum TheoryAtomic physicsTime-resolved spectroscopyAtomic and Molecular Clusters (physics.atm-clus)
researchProduct

Experimental investigation of the relation between H− negative ion density and Lyman-α emission intensity in a microwave discharge

2016

International audience; A new mechanism for producing negative ions in low density and low power hydrogen plasmas was proposed recently. It refers to anion formation due to collisions between hydrogen atoms being in the first excited state. The proposed mechanism was indirectly supported by the quadratic relation observed between the extracted negative ion current and Lyman-α radiation of a filament-driven arc discharge, when borrowed data from the literature were combined. The present work provides experimental data comparing directly the absolute negative ion density and Lyman-α radiation in an ECR-driven hydrogen plasma source. The previously mentioned quadratic relation is not observed …

Work (thermodynamics)Acoustics and UltrasonicsHydrogenchemistry.chemical_elementPlasmaRadiationCondensed Matter Physics01 natural sciences7. Clean energy010305 fluids & plasmasSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsIonElectric arcchemistryPhysics::Plasma Physics[PHYS.PHYS.PHYS-PLASM-PH]Physics [physics]/Physics [physics]/Plasma Physics [physics.plasm-ph]Excited state0103 physical sciencesAtomic physics010306 general physicsMicrowave
researchProduct

Exploring the Solar Wind from Its Source on the Corona into the Inner Heliosphere during the First Solar Orbiter-Parker Solar Probe Quadrature

2021

This Letter addresses the first Solar Orbiter (SO) -- Parker Solar Probe (PSP) quadrature, occurring on January 18, 2021, to investigate the evolution of solar wind from the extended corona to the inner heliosphere. Assuming ballistic propagation, the same plasma volume observed remotely in corona at altitudes between 3.5 and 6.3 solar radii above the solar limb with the Metis coronagraph on SO can be tracked to PSP, orbiting at 0.1 au, thus allowing the local properties of the solar wind to be linked to the coronal source region from where it originated. Thanks to the close approach of PSP to the Sun and the simultaneous Metis observation of the solar corona, the flow-aligned magnetic fiel…

[PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Astrophysics::High Energy Astrophysical PhenomenaSolar windFOS: Physical sciencesSolar radiusSolar coronaAstrophysics01 natural scienceslaw.inventionCurrent sheetOrbiterMagnetohydrodynamicsInterplanetary turbulenceHeliospherePhysics - Space Physics[PHYS.PHYS.PHYS-PLASM-PH]Physics [physics]/Physics [physics]/Plasma Physics [physics.plasm-ph]law0103 physical sciencesAstrophysics::Solar and Stellar Astrophysics010303 astronomy & astrophysicsCoronagraphSolar and Stellar Astrophysics (astro-ph.SR)Physics[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph]010308 nuclear & particles physicsMagnetohydrodynamics; Space plasmas; Interplanetary turbulence; Solar corona; Heliosphere; Solar windAstronomy and AstrophysicsPlasma[PHYS.ASTR.SR]Physics [physics]/Astrophysics [astro-ph]/Solar and Stellar Astrophysics [astro-ph.SR]CoronaSpace Physics (physics.space-ph)[PHYS.PHYS.PHYS-SPACE-PH]Physics [physics]/Physics [physics]/Space Physics [physics.space-ph]Physics - Plasma PhysicsPlasma Physics (physics.plasm-ph)Solar windAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary SciencePhysics::Space PhysicsSpace plasmasAstrophysics::Earth and Planetary Astrophysics[PHYS.PHYS.PHYS-DATA-AN]Physics [physics]/Physics [physics]/Data Analysis Statistics and Probability [physics.data-an]Heliosphere
researchProduct

On the analytical expression of the multicompacton and some exact compact solutions of a nonlinear diffusive Burgers’type equation

2018

International audience; We consider the nonlinear diffusive Burgers' equation as a model equation for signals propagation on the nonlinear electrical transmission line with intersite nonlinearities. By applying the extend sine-cosine method and using an appropriate modification of the Double-Exp function method, we successfully derived on one hand the exact analytical solutions of two types of solitary waves with strictly finite extension or compact support: kinks and pulses, and on the other hand the exact solution for two interacting pulse solitary waves with compact support. These analytical results indicate that the speed of the pulse compactons doesn't depends explicitly on the pulse a…

[PHYS.PHYS.PHYS-FLU-DYN]Physics [physics]/Physics [physics]/Fluid Dynamics [physics.flu-dyn]Differential equationDifferential-Equations[PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph]Solitons01 natural sciences010305 fluids & plasmasKink with compact support[PHYS.PHYS.PHYS-PLASM-PH]Physics [physics]/Physics [physics]/Plasma Physics [physics.plasm-ph]Modified double Exp-function method0103 physical sciences[MATH]Mathematics [math]Nonlinear Sciences::Pattern Formation and Solitons010301 acousticsN) EquationsPhysicsExtend sine-cosine methodNumerical AnalysisApplied MathematicsMathematical analysis[PHYS.MECA]Physics [physics]/Mechanics [physics]Wave SolutionsNonlinear diffusive Burgers' equationExpression (mathematics)Pulse (physics)Nonlinear systemMulticompactonEvolution-EquationsExact solutions in general relativityCompactonsPulse-amplitude modulationModeling and SimulationLine (geometry)TrigonometryPulse with compact supportCommunications in Nonlinear Science and Numerical Simulation
researchProduct