Search results for "piecewise linear"
showing 10 items of 31 documents
Asymptotical Convergence Evaluation for a Parabolic Problem Arising in Circuit Theory
1990
Unified halo-independent formalism from convex hulls for direct dark matter searches
2017
Using the Fenchel-Eggleston theorem for convex hulls (an extension of the Caratheodory theorem), we prove that any likelihood can be maximized by either a dark matter 1- speed distribution $F(v)$ in Earth's frame or 2- Galactic velocity distribution $f^{\rm gal}(\vec{u})$, consisting of a sum of delta functions. The former case applies only to time-averaged rate measurements and the maximum number of delta functions is $({\mathcal N}-1)$, where ${\mathcal N}$ is the total number of data entries. The second case applies to any harmonic expansion coefficient of the time-dependent rate and the maximum number of terms is ${\mathcal N}$. Using time-averaged rates, the aforementioned form of $F(v…
A family of higher-order single layer plate models meeting Cz0-requirements for arbitrary laminates
2019
Abstract In the framework of displacement-based equivalent single layer (ESL) plate theories for laminates, this paper presents a generic and automatic method to extend a basis higher-order shear deformation theory (polynomial, trigonometric, hyperbolic…) to a multilayer C z 0 higher-order shear deformation theory. The key idea is to enhance the description of the cross-sectional warping: the odd high-order C z 1 function of the basis model is replaced by one odd and one even high-order function and including the characteristic zig-zag behaviour by means of piecewise linear functions. In order to account for arbitrary lamination schemes, four such piecewise continuous functions are consider…
Noise-enhanced stability of periodically driven metastable states
2000
We study the effect of noise-enhanced stability of periodically driven metastable states in a system described by piecewise linear potential. We find that the growing of the average escape time with the intensity of the noise is depending on the initial condition of the system. We analytically obtain the condition for the noise enhanced stability effect and verify it by numerical simulations.
Interval estimation for the breakpoint in segmented regression: a smoothed score-based approach
2017
Summary This paper is concerned with interval estimation for the breakpoint parameter in segmented regression. We present score-type confidence intervals derived from the score statistic itself and from the recently proposed gradient statistic. Due to lack of regularity conditions of the score, non-smoothness and non-monotonicity, naive application of the score-based statistics is unfeasible and we propose to exploit the smoothed score obtained via induced smoothing. We compare our proposals with the traditional methods based on the Wald and the likelihood ratio statistics via simulations and an analysis of a real dataset: results show that the smoothed score-like statistics perform in prac…
Lyapunov exponent and topological entropy plateaus in piecewise linear maps
2013
We consider a two-parameter family of piecewise linear maps in which the moduli of the two slopes take different values. We provide numerical evidence of the existence of some parameter regions in which the Lyapunov exponent and the topological entropy remain constant. Analytical proof of this phenomenon is also given for certain cases. Surprisingly however, the systems with that property are not conjugate as we prove by using kneading theory.
Testing with a nuisance parameter present only under the alternative: a score-based approach with application to segmented modelling
2016
ABSTRACTWe introduce a score-type statistic to test for a non-zero regression coefficient when the relevant term involves a nuisance parameter present only under the alternative. Despite the non-regularity and complexity of the problem and unlike the previous approaches, the proposed test statistic does not require the nuisance to be estimated. It is simple to implement by relying on the conventional distributions, such as Normal or t, and it justified in the setting of probabilistic coherence. We focus on testing for the existence of a breakpoint in segmented regression, and illustrate the methodology with an analysis on data of DNA copy number aberrations and gene expression profiles from…
Escape Times in Fluctuating Metastable Potential and Acceleration of Diffusion in Periodic Fluctuating Potentials
2004
The problems of escape from metastable state in randomly flipping potential and of diffusion in fast fluctuating periodic potentials are considered. For the overdamped Brownian particle moving in a piecewise linear dichotomously fluctuating metastable potential we obtain the mean first-passage time (MFPT) as a function of the potential parameters, the noise intensity and the mean rate of switchings of the dichotomous noise. We find noise enhanced stability (NES) phenomenon in the system investigated and the parameter region of the fluctuating potential where the effect can be observed. For the diffusion of the overdamped Brownian particle in a fast fluctuating symmetric periodic potential w…
Estimating the temperature evolution of foodstuffs during freezing with a 3D meshless numerical method
2015
Abstract Freezing processes are characterised by sharp changes in specific heat capacity and thermal conductivity for temperatures close to the freezing point. This leads to strong nonlinearities in the governing PDE that may be difficult to resolve using traditional numerical methods. In this work we present a meshless numerical method, based on a local Hermite radial basis function collocation approach in finite differencing mode, to allow the solution of freezing problems. By introducing a Kirchhoff transformation and solving the governing equations in Kirchhoff space, the strength of nonlinearity is reduced while preserving the structure of the heat equation. In combination with the hig…
Bounds to internal forces for elastic-plastic solids subjected to variable loads
1979
Considering an elastic-plastic workhardening solid with piecewise linear yield surfaces and a piecewise linear workhardening law, we give a method for constructing bounds to the internal forces and to the (hardened) yield stresses produced by the action of variable loads at any point of the body and at any time. The loading history is supposed to be unknown, but the loads range within a given domain.