Search results for "pion"

showing 10 items of 1304 documents

Folate targeted coated SPIONs as efficient tool for MRI

2017

The development of more sensitive diagnostic tools allowing an early-stage and highly efficient medical imaging of tumors remains a challenge. Magnetic nanoparticles seem to be the contrast agents with the highest potential, if properly constructed. Therefore, in this study, hybrid magnetic nanoarchitectures were developed using a new amphiphilic inulin-based graft copolymer (INU-LAPEG-FA) as coating material for 10-nm spinel iron oxide (magnetite, Fe3O4) superparamagnetic nanoparticles (SPION). Folic acid (FA) covalently linked to the coating copolymer in order to be exposed onto the nanoparticle surface was chosen as the targeting agent because folate receptors are upregulated in many can…

magnetic resonance imaging (MRI)Materials sciencecancer targetingfolic acid (FA)NanoparticleNanotechnology02 engineering and technologyengineering.material010402 general chemistryDiagnostic tools01 natural sciencesCoatingsuperparamagnetic spinel iron oxide nanoparticles (SPIONs)AmphiphilemedicineGeneral Materials ScienceElectrical and Electronic Engineeringinulin copolymermedicine.diagnostic_testMagnetic resonance imaging021001 nanoscience & nanotechnologyCondensed Matter PhysicsAtomic and Molecular Physics and Optics0104 chemical sciencesMagnetic hyperthermiaFolic acidengineeringMagnetic nanoparticlesMaterials Science (all)0210 nano-technologyhuman activities
researchProduct

Freeze-out radii extracted from three-pion cumulants in pp, p–Pb and Pb–Pb collisions at the LHC

2014

In high-energy collisions, the spatio-temporal size of the particle production region can be measured using the Bose-Einstein correlations of identical bosons at low relative momentum. The source radii are typically extracted using two-pion correlations, and characterize the system at the last stage of interaction, called kinetic freeze-out. In low-multiplicity collisions, unlike in high-multiplicity collisions, two-pion correlations are substantially altered by background correlations, e.g. mini-jets. Such correlations can be suppressed using three-pion cumulant correlations. We present the first measurements of the size of the system at freeze-out extracted from three-pion cumulant correl…

kinetic freezout heavy-ion experiments particle cummulantsMULTIPLICITY DEPENDENCEfreeze-out radius; three-pion cumulants; pp; p–Pb and Pb–Pb collisionsPb-Pb and p-Pb collisions at the LHCpp01 natural sciencesHigh Energy Physics - Experimentlaw.inventionColor-glass condensateHigh Energy Physics - Experiment (hep-ex)ALICElawheavy-ion experiments[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]PbPbNuclear Experiment (nucl-ex)[ PHYS.NEXP ] Physics [physics]/Nuclear Experiment [nucl-ex]kinetic freezoutNuclear ExperimentNuclear ExperimentBosonPhysicsLarge Hadron ColliderPhysicsfreeze-out radiusHEAVY-ION GENERATORlcsh:QC1-999:Mathematics and natural scienses: 400::Physics: 430::Nuclear and elementary particle physics: 431 [VDP]Three-pion cumulant correlations3. Good healthPRIRODNE ZNANOSTI. Fizika.BOSE-EINSTEIN CORRELATIONSParticle Physics - ExperimentNuclear and High Energy PhysicsParticle physics[PHYS.NEXP] Physics [physics]/Nuclear Experiment [nucl-ex]QC1-999particle cummulantsVDP::Matematikk og naturvitenskap: 400::Fysikk: 430::Kjerne- og elementærpartikkelfysikk: 431FOS: Physical sciencesALICE; pp; pPb; PbPb; Bose-Einstein; correlation[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]Kinetic energyp-pNuclear physicsBOSE-EINSTEIN CORRELATIONS; RANGE ANGULAR-CORRELATIONS; HEAVY-ION GENERATOR; MULTIPLICITY DEPENDENCEPion0103 physical sciencesNuclear Physics - Experimentddc:530Multiplicity (chemistry)010306 general physicsta114p–Pb and Pb–Pb collisionsVDP::Mathematics and natural scienses: 400::Physics: 430::Nuclear and elementary particle physics: 431010308 nuclear & particles physics:Matematikk og naturvitenskap: 400::Fysikk: 430::Kjerne- og elementærpartikkelfysikk: 431 [VDP]ALICE experimentBose–Einstein correlationsBose-EinsteinNATURAL SCIENCES. Physics.correlationpPbthree-pion cumulantslcsh:PhysicsBose–Einstein condensateRANGE ANGULAR-CORRELATIONSPhysics Letters B
researchProduct

Two-pion femtoscopy in p-Pb collisions at √sNN = 5.02 TeV

2015

We report the results of the femtoscopic analysis of pairs of identical pions measured in p-Pb collisions at √sNN = 5.02 TeV. Femtoscopic radii are determined as a function of event multiplicity and pair momentum in three spatial dimensions. As in the pp collision system, the analysis is complicated by the presence of sizable background correlation structures in addition to the femtoscopic signal. The radii increase with event multiplicity and decrease with pair transverse momentum. When taken at comparable multiplicity, the radii measured in p-Pb collisions, at high multiplicity and low pair transverse momentum, are 10%–20% higher than those observed in pp collisions but below those observ…

p-Pb collisionspionsNuclear Experiment
researchProduct

Transverse momentum spectra and nuclear modification factors of charged particles in pp, p-Pb and Pb-Pb collisions at the LHC

2018

We report the measured transverse momentum ($p_{\rm T}$) spectra of primary charged particles from pp, p-Pb and Pb-Pb collisions at a center-of-mass energy $\sqrt{s_{\rm NN}} = 5.02$ TeV in the kinematic range of $0.15<p_{\rm T}<50$ GeV/$c$ and $|\eta|< 0.8$. A significant improvement of systematic uncertainties motivated the reanalysis of data in pp and Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 2.76$ TeV, as well as in p-Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV, which is also presented. Spectra from Pb-Pb collisions are presented in nine centrality intervals and are compared to a reference spectrum from pp collisions scaled by the number of binary nucleon-nucleon collisions. For cent…

:Kjerne- og elementærpartikkelfysikk: 431 [VDP]heavy ion: scatteringHadronmomentum [up]binaryMULTIPLICITY DEPENDENCEPartonheavy ion: scattering ; transverse momentum: momentum spectrum ; quantum chromodynamics: matter ; parton: energy loss ; momentum: high ; up: momentum ; pp: scattering ; nucleus ; charged particle ; suppression ; energy dependence ; impact parameter ; transport theory ; nucleon nucleon ; CERN LHC Coll ; kinematics ; binarymomentum spectrum [transverse momentum]hiukkasfysiikkaKAONnucl-ex01 natural sciences7. Clean energy2760 GeV-cms/nucleonHigh Energy Physics - Experimenttransverse momentum: momentum spectrumHeavy Ion Experiments; Heavy-ion collision; Nuclear and high energy physicsHigh Energy Physics - Experiment (hep-ex)quark gluon plasma Heavy Ion Experiments Heavy-ion collisionnucleon nucleonHeavy-ion collisionhigh [momentum]PIONscattering [p p]transport theory[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex][ PHYS.NEXP ] Physics [physics]/Nuclear Experiment [nucl-ex]Nuclear Experiment (nucl-ex)impact parameterNuclear ExperimentNuclear ExperimentQCD matterparticle production and suppressionPhysicsPhysicsHADRONSheavy ion experiments heavy ion collision particle production and suppressionHeavy Ion Experiments; Heavy-ion collisionVDP::Kjerne- og elementærpartikkelfysikk: 431suppressionCENTRALITY DEPENDENCEcharged particleCharged particleMULTIPLICITY DEPENDENCE; CENTRALITY DEPENDENCE; HADRONS; SUPPRESSION; MODEL; KAON; PIONquark gluon plasma:Mathematics and natural scienses: 400::Physics: 430::Nuclear and elementary particle physics: 431 [VDP]:Nuclear and elementary particle physics: 431 [VDP]CERN LHC CollVDP::Nuclear and elementary particle physics: 431kinematicsHeavy Ion ExperimentImpact parameterParticle Physics - ExperimentHeavy Ion Experiments Heavy-ion collision Nuclear and High Energy Physics.Nuclear and High Energy Physicsp p: scatteringnucleon nucleon: scatteringenergy loss [parton]FOS: Physical sciences[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]114 Physical sciencesenergy dependenceNuclear physicsPionHeavy Ion Experiments[ PHYS.HEXP ] Physics [physics]/High Energy Physics - Experiment [hep-ex]scattering [heavy ion]0103 physical sciencesmatter [quantum chromodynamics]lcsh:Nuclear and particle physics. Atomic energy. Radioactivityddc:530Nuclear Physics - Experiment5020 GeV-cms/nucleonup: momentum010306 general physicsp nucleus: scatteringquantum chromodynamics: matterta114010308 nuclear & particles physicshep-exnucleus:Matematikk og naturvitenskap: 400::Fysikk: 430::Kjerne- og elementærpartikkelfysikk: 431 [VDP]Nuclear and high energy physicsheavy ion collisionMODEL* Automatic Keywords *13. Climate actionmomentum: highQuark–gluon plasmalcsh:QC770-798High Energy Physics::Experimentparton: energy lossEnergy (signal processing)experimental results
researchProduct

Lowest- Q2 measurement of the γp → Δ reaction: Probing the pionic contribution

2006

To determine nonspherical angular momentum amplitudes in hadrons at long ranges (low Q^2), data were taken for the p(\vec{e},e'p)\pi^0 reaction in the Delta region at Q^2=0.060 (GeV/c)^2 utilizing the magnetic spectrometers of the A1 Collaboration at MAMI. The results for the dominant transition magnetic dipole amplitude and the quadrupole to dipole ratios at W=1232 MeV are: M_{1+}^{3/2} = (40.33 +/- 0.63_{stat+syst} +/- 0.61_{model}) (10^{-3}/m_{\pi^+}),Re(E_{1+}^{3/2}/M_{1+}^{3/2}) = (-2.28 +/- 0.29_{stat+syst} +/- 0.20_{model})%, and Re(S_{1+}^{3/2}/M_{1+}^{3/2}) = (-4.81 +/- 0.27_{stat+syst} +/- 0.26_{model})%. These disagree with predictions of constituent quark models but are in reaso…

PhysicsDipoleAngular momentumNuclear and High Energy PhysicsPionHadronQuadrupoleLattice (group)Constituent quarkHigh Energy Physics::ExperimentAtomic physicsNuclear ExperimentMagnetic dipoleThe European Physical Journal A
researchProduct

Towards extracting the timelike pion form factor on CLS two-flavour ensembles

2017

35th International Symposium on Lattice Field Theory, Lattice 2017, Granada, Spain, 18 Jun 2017 - 24 Jun 2017; The European physical journal / Web of Conferences 175, 05027 (2018). doi:10.1051/epjconf/201817505027

PhysicsParticle physicsMuon010308 nuclear & particles physicsPhysicsQC1-999High Energy Physics::LatticeHadronHigh Energy Physics - Lattice (hep-lat)FOS: Physical sciencesFermion01 natural sciences530Formalism (philosophy of mathematics)High Energy Physics - LatticeCLs upper limitsPion0103 physical sciencesddc:530High Energy Physics::ExperimentVacuum polarization010306 general physicsNuclear Experiment
researchProduct

Monte Carlo Simulation for Elastic Energy Loss of Hard Partons in a Hydrodynamical Background

2011

We have developed a Monte Carlo simulation describing the $2 \rightarrow 2$ scatterings of perturbatively produced, non-eikonally propagating high-energy partons with the quarks and gluons of the expanding QCD medium created in ultrarelativistic heavy ion collisions. The partonic scattering rates are computed in leading-order perturbative QCD (pQCD), while three different hydrodynamical scenarios are used to model the strongly interacting medium. We compare our results and tune the model with the neutral pion suppression observed in $\sqrt{s_{NN}}=200$ GeV Au+Au collisions at the BNL-RHIC. We find the incoherent nature of elastic energy loss incompatible with the measured angular dependence…

Quantum chromodynamicsPhysicsNuclear and High Energy PhysicsParticle physicsLarge Hadron ColliderScatteringMonte Carlo methodNuclear TheoryHigh Energy Physics::PhenomenologyPerturbative QCDFOS: Physical sciencesPartonHigh Energy Physics - PhenomenologyPionHigh Energy Physics - Phenomenology (hep-ph)Quark–gluon plasmaHigh Energy Physics::ExperimentNuclear Experiment
researchProduct

Pion parton distributions in a nonlocal Lagrangian

2005

We use phenomenological nonlocal Lagrangians, which lead to non trivial forms for the quark propagator, to describe the pion. We define a procedure, based on the Dyson-Schwinger equations, for the calculation of the pion parton distributions at low Q^2. The obtained parton distributions fulfill all the wishful properties. Using a convolution approach we incorporate the composite character of the constituent quarks in the formalism. We evolve, using the Renormalization Group, the calculated parton distributions to the experimental scale and compare favorably with the data and draw conclusions.

QuarkPhysicsNuclear and High Energy PhysicsParticle physicsHigh Energy Physics::LatticeNuclear TheoryHigh Energy Physics::PhenomenologyFOS: Physical sciencesPropagatorPartonRenormalization groupNon localPartícules (Física nuclear)High Energy Physics - PhenomenologyFormalism (philosophy of mathematics)symbols.namesakeHigh Energy Physics - Phenomenology (hep-ph)PionsymbolsFísica nuclearHigh Energy Physics::ExperimentNuclear ExperimentLagrangianThe European Physical Journal A
researchProduct

A dispersion theoretical approach to the threshold amplitudes of pion photoproduction

1996

We give predictions for the partial wave amplitudes of pion photoproduction near threshold by means of dispersion relations at fixed t. The free parameters of this approach are determined by a fit to experimental data in the energy range 160 MeV $\le E_{\gamma} \le$ 420 MeV. The observables near threshold are found to be rather sensitive to the amplitudes in the resonance region, in particular to the $\Delta$ (1232) and $N^*$ (1440). We obtain a good agreement with the existing threshold data for both charged and neutral pion production. Our predictions also agree well with the results of chiral perturbation theory, except for neutral pion production off the neutron.

PhysicsNuclear and High Energy PhysicsChiral perturbation theoryNuclear TheoryNuclear TheoryFOS: Physical sciencesObservableResonance (particle physics)Nuclear physicsNuclear Theory (nucl-th)AmplitudePionDispersion relationNeutronNuclear ExperimentFree parameter
researchProduct

Market must be defended: The role of counter-espionage policy in protecting domestic market welfare

2022

Governments of advanced economies are extremely concerned about the illicit acquisition of information on critical technologies employed by their industries, and countering this economic espionage is quickly becoming one of their top priorities. The present paper advances the theoretical analysis of the interaction between economic espionage and counter-espionage, and presents a first approximation to an inquiry into the rationale for the influence of market competition in its dynamics. The proposed model assumes a country with a one-market economy open to international trade whose product is supplied by domestic firms. Moreover, successful economic espionage implying market entry of foreig…

Economics and Econometricsmarket entry barriersecret technologyUNESCO::CIENCIAS ECONÓMICASeconomic espionagemarket welfareManagement Monitoring Policy and Lawcounter-espionage policy
researchProduct