Search results for "plasmonit"
showing 8 items of 18 documents
Fabrication-friendly polarization-sensitive plasmonic grating for optimal surface-enhanced Raman spectroscopy
2020
Plasmonic nanostructures are widely utilized in surface-enhanced Raman spectroscopy (SERS) from ultraviolet to near-infrared applications. Periodic nanoplasmonic systems such as plasmonic gratings are of great interest as SERS-active substrates due to their strong polarization dependence and ease of fabrication. In this work, we modelled a silver grating that manifests a subradiant plasmonic resonance as a dip in its reflectivity with significant near-field enhancement only for transverse-magnetic (TM) polarization of light. We investigated the role of its fill factor, commonly defined as a ratio between the width of the grating groove and the grating period, on the SERS enhancement. We des…
Interactions between silver nanoparticles and fluorescent phytochromes from Deinococcus radiodurans
2017
Poikkitieteelliset sovellukset ovat viime aikoina yleistyneet tieteellisessä tutkimuksessa. Tämä näkyy hyvin esimerkiksi elävän kudoksen kuvantamisen kehittymisessä, jota varten etsitään jatkuvasti parempia biologisia leimoja fysiikan ja kemian keinoin. Tässä tutkielmassa on kehitetty ensimmäinen lähi-infrapuna-alueen fluoresenssileima, joka hyödyntää hopeananopartikkeleja ja fytokromeja. Kompleksi on syntetisoitu itse ja sen rakenne on todennettu optisen spektroskopian, elektroforeesin ja elektronimikroskopian keinoin. Lupaavat fluoresenssiominaisuudet saatiin käyttämällä monomeerisen Deinococcus radiodurans -fytokromin kromoforia sitovaa domeenia (CBDmon). Hopeapartikkelien läsnäollessa C…
Pintaplasmonipolaritonien ja molekyylien väliset energiansiirtoprosessit ja dynamiikka
2012
Elongation and plasmonic activity of embedded metal nanoparticles following heavy ion irradiation
2023
Shape modification of embedded nanoparticles by swift heavy ion (SHI) irradiation is an effective way to produce nanostructures with controlled size, shape, and orientation. In this study, randomly oriented gold nanorods embedded in SiO2 are shown to re-orient along the ion beam direction. The degree of orientation depends on the irradiation conditions and the nanorod's initial size. SHI irradiation was also applied to modify spherical metallic nanoparticles embedded in Al2O3. The results showed that they elongate due to the irradiation comparably to those embedded in SiO2. Metallic nanostructures embedded in dielectric matrices can exhibit localized surface plasmon (LSP) modes. The elongat…
Kohn-Sham Decomposition in Real-Time Time-Dependent Density-Functional Theory An Efficient Tool for Analyzing Plasmonic Excitations
2017
The real-time-propagation formulation of time-dependent density-functional theory (RT-TDDFT) is an efficient method for modeling the optical response of molecules and nanoparticles. Compared to the widely adopted linear-response TDDFT approaches based on, e.g., the Casida equations, RT-TDDFT appears, however, lacking efficient analysis methods. This applies in particular to a decomposition of the response in the basis of the underlying single-electron states. In this work, we overcome this limitation by developing an analysis method for obtaining the Kohn-Sham electron-hole decomposition in RT-TDDFT. We demonstrate the equivalence between the developed method and the Casida approach by a be…
Optical properties of conductive carbon-based nanomaterials
2016
The interaction of light with carbon nanomaterials is the main focus of this thesis. I explore several nanostructured systems involving different allotropes of carbon, and characterize them both electrically, if applicable, and optically. Special attention is paid to search for plasmon-like excitations on the systems, or utilizing surface plasmons on characterization. The first objective is to achieve control of carbon nanotube (CNT) conductivity with surface plasmon polaritons (SPPs), which resulted in the first CNT field-effect transistor (FET) that can be gated definitively with SPPs. The second objective is the investigation of optical properties of various thin carbon-based molecular n…
Quasiparticle properties of nonequilibrium gluon plasma
2018
We apply classical gluodynamics to early stages of ultrarelativistic heavy-ion collisions. We start by giving a brief overview of QCD. Then we proceed to the space-time evolution of ultrarelativistic heavy-ion collisions in the color glass condensate framework and go through the basics of real-time gluodynamics on the lattice in the temporal gauge. We study the plasmon mass scale in three- and two-dimensional systems by comparing three different methods to measure the mass scale. The methods are a formula which can be derived from Hard Thermal Loop effective theory at leading order (HTL), the effective dispersion relation (DR) and measurement of the plasma oscillation frequency triggered by th…
Interaction between surface plasmon polaritons and molecules in strong coupling limit
2016
Miniaturization of optical elements and their integration to electronic circuits is limited by diffraction limit. It was realized that light being coupled to surface plasmons (SP) can overcome this limit. Employing also optically active molecules in combination with SPs can drive optical circuits to nm-scale and add functionalities. For efficient performance of plasmonic elements involving fluorescent dye molecules investigation of physics behind their interaction is of high priority. In this thesis interaction between surface plasmon polaritons (SPPs) and different dye molecules has been studied, especially within strong coupling limit, which brings in totally new physical properties in th…