Search results for "plastid"
showing 10 items of 54 documents
Synthetic conversion of leaf chloroplasts into carotenoid-rich plastids reveals mechanistic basis of natural chromoplast development
2020
Plastids, the defining organelles of plant cells, undergo physiological and morphological changes to fulfill distinct biological functions. In particular, the differentiation of chloroplasts into chromoplasts results in an enhanced storage capacity for carotenoids with industrial and nutritional value such as beta-carotene (provitamin A). Here, we show that synthetically inducing a burst in the production of phytoene, the first committed intermediate of the carotenoid pathway, elicits an artificial chloroplast-to-chromoplast differentiation in leaves. Phytoene overproduction initially interferes with photosynthesis, acting as a metabolic threshold switch mechanism that weakens chloroplast i…
Chloroplast genomes of Rubiaceae: Comparative genomics and molecular phylogeny in subfamily Ixoroideae.
2020
In Rubiaceae phylogenetics, the number of markers often proved a limitation with authors failing to provide well-supported trees at tribal and generic levels. A robust phylogeny is a prerequisite to study the evolutionary patterns of traits at different taxonomic levels. Advances in next-generation sequencing technologies have revolutionized biology by providing, at reduced cost, huge amounts of data for an increased number of species. Due to their highly conserved structure, generally recombination-free, and mostly uniparental inheritance, chloroplast DNA sequences have long been used as choice markers for plant phylogeny reconstruction. The main objectives of this study are: 1) to gain in…
Evaluation of chloroplast genome annotation tools and application to analysis of the evolution of coffee species.
2018
International audience; Chloroplast sequences are widely used for phylogenetic analysis due to their high degree of conservation in plants. Whole chloroplast genomes can now be readily obtained for plant species using new sequencing methods, giving invaluable data for plant evolution However new annotation methods are required for the efficient analysis of this data to deliver high quality phylogenetic analyses. In this study, the two main tools for chloroplast genome annotation were compared. More consistent detection and annotation of genes were produced with GeSeq when compared to the currently used Dogma. This suggests that the annotation of most of the previously annotated chloroplast …
The complete plastid genome of the middle Asian endemic of Stipa lipskyi (Poaceae)
2016
AbstractThe structure of the Stipa lipskyi (GenBank accession no. KT692644) plastid genome is similar to that of closely related Poaceae species: it has a total length of 137 755 bp, the base composition of the plastome is the following: A (30.7%), C (19.3%), G (19.4%) and T (30.5%). The S. lipskyi plastid genome contains 71 genes, excluding second IR region. A complete plastome sequence of S. lipskyi will help the development of primers for examining phylogeny and hybridization events in this taxonomically difficult genus.
Overexpression of the triose phosphate translocator (TPT) complements the abnormal metabolism and development of plastidial glycolytic glyceraldehyde…
2017
The presence of two glycolytic pathways working in parallel in plastids and cytosol has complicated the understanding of this essential process in plant cells, especially the integration of the plastidial pathway into the metabolism of heterotrophic and autotrophic organs. It is assumed that this integration is achieved by transport systems, which exchange glycolytic intermediates across plastidial membranes. However, it is unknown whether plastidial and cytosolic pools of 3-phosphoglycerate (3-PGA) can equilibrate in non-photosynthetic tissues. To resolve this question, we employed Arabidopsis mutants of the plastidial glycolytic isoforms of glyceraldehyde-3-phosphate dehydrogenase (GAPCp)…
The specific role of plastidial glycolysis in photosynthetic and heterotrophic cells under scrutiny through the study of glyceraldehyde-3-phosphate d…
2016
The cellular compartmentalization of metabolic processes is an important feature in plants where the same pathways could be simultaneously active in different compartments. Plant glycolysis occurs in the cytosol and plastids of green and non-green cells in which the requirements of energy and precursors may be completely different. Because of this, the relevance of plastidial glycolysis could be very different depending on the cell type. In the associated study, we investigated the function of plastidial glycolysis in photosynthetic and heterotrophic cells by specifically driving the expression of plastidial glyceraldehyde-3-phosphate dehydrogenase (GAPCp) in a glyceraldehyde-3-phosphate de…
Phosphoglycerate Kinases Are Co-Regulated to Adjust Metabolism and to Optimize Growth
2017
[EN] In plants, phosphoglycerate kinase (PGK) converts 1,3-bisphosphoglycerate into 3-phosphoglycerate in glycolysis but also participates in the reverse reaction in gluconeogenesis and the Calvin-Benson cycle. In the databases, we found three genes that encode putative PGKs. Arabidopsis (Arabidopsis thaliana) PGK1 was localized exclusively in the chloroplasts of photosynthetic tissues, while PGK2 was expressed in the chloroplast/plastid of photosynthetic and nonphotosynthetic cells. PGK3 was expressed ubiquitously in the cytosol of all studied cell types. Measurements of carbohydrate content and photosynthetic activities in PGK mutants and silenced lines corroborated that PGK1 was the phot…
Simultaneous speciation in the European high mountain flowering plant genus Facchinia (Minuartia s.l., Caryophyllaceae) revealed by genotyping-by-seq…
2017
Understanding the relative importance of different mechanisms of speciation in a given lineage requires fully resolved interspecific relationships. Using Facchinia, a genus of seven species centred in the European Alps, we explore whether the polytomy found by Sanger sequencing analyses of standard nuclear (ITS) and plastid markers (trnQ-rps16) is a hard or soft polytomy by substantially increasing the amount of DNA sequence data, generated by genotyping-by-sequencing. In comparison to 142 phylogenetically informative sites in the Sanger sequences the GBS sequences yielded 3363 phylogenetically informative sites after exclusion of apparently oversaturated SNPs. Maximum parsimony, maximum li…
An integrated proteomic and metabolomic study to evaluate the effect of nucleus-cytoplasm interaction in a diploid citrus cybrid between sweet orange…
2018
Key message: Our results provide a comprehensive overview how the alloplasmic condition might lead to a significant improvement in citrus plant breeding, developing varieties more adaptable to a wide range of conditions. Abstract: Citrus cybrids resulting from somatic hybridization hold great potential in plant improvement. They represent effective products resulting from the transfer of organelle-encoded traits into cultivated varieties. In these cases, the plant coordinated array of physiological, biochemical, and molecular functions remains the result of integration among different signals, which derive from the compartmentalized genomes of nucleus, plastids and mitochondria. To dissect …
Functional Implications of Multiple IM30 Oligomeric States
2019
The inner membrane-associated protein of 30 kDa (IM30), also known as the vesicle-inducing protein in plastids 1 (Vipp1), is essential for photo-autotrophic growth of cyanobacteria, algae and higher plants. While its exact function still remains largely elusive, it is commonly accepted that IM30 is crucially involved in thylakoid membrane biogenesis, stabilization and/or maintenance. A characteristic feature of IM30 is its intrinsic propensity to form large homo-oligomeric protein complexes. 15 years ago, it has been reported that these supercomplexes have a ring-shaped structure. However, the in vivo significance of these ring structures is not finally resolved yet and the formation of mor…