Search results for "point cloud"
showing 10 items of 81 documents
New Method of Microimages Generation for 3D Display
2018
In this paper, we propose a new method for the generation of microimages, which processes real 3D scenes captured with any method that permits the extraction of its depth information. The depth map of the scene, together with its color information, is used to create a point cloud. A set of elemental images of this point cloud is captured synthetically and from it the microimages are computed. The main feature of this method is that the reference plane of displayed images can be set at will, while the empty pixels are avoided. Another advantage of the method is that the center point of displayed images and also their scale and field of view can be set. To show the final results, a 3D InI dis…
Full-parallax 3D display from stereo-hybrid 3D camera system
2018
Abstract In this paper, we propose an innovative approach for the production of the microimages ready to display onto an integral-imaging monitor. Our main contribution is using a stereo-hybrid 3D camera system, which is used for picking up a 3D data pair and composing a denser point cloud. However, there is an intrinsic difficulty in the fact that hybrid sensors have dissimilarities and therefore should be equalized. Handled data facilitate to generating an integral image after projecting computationally the information through a virtual pinhole array. We illustrate this procedure with some imaging experiments that provide microimages with enhanced quality. After projection of such microim…
Dynamic 3D Scene Reconstruction and Enhancement
2017
International audience; In this paper, we present a 3D reconstruction and enhancement approach for high quality dynamic city scene reconstructions. We first detect and segment the moving objects using 3D Motion Segmenta-tion approach by exploiting the feature trajectories' behaviours. Getting the segmentations of both the dynamic scene parts and the static scene parts, we propose an efficient point cloud registration approach which takes the advantages of 3-point RANSAC and Iterative Closest Points algorithms to produce precise point cloud alignment. Furthermore, we proposed a point cloud smoothing and texture mapping framework to enhance the results of reconstructions for both the static a…
Visual Marker Guided Point Cloud Registration in a Large Multi-Sensor Industrial Robot Cell
2018
This paper presents a benchmark and accuracy analysis of 3D sensor calibration in a large industrial robot cell. The sensors used were the Kinect v2 which contains both an RGB and an IR camera measuring depth based on the time-of-flight principle. The approach taken was based on a novel procedure combining Aruco visual markers, methods using region of interest and iterative closest point. The calibration of sensors is performed pairwise, exploiting the fact that time-of-flight sensors can have some overlap in the generated point cloud data. For a volume measuring 10m × 14m × 5m a typical accuracy of the generated point cloud data of 5–10cm was achieved using six sensor nodes.
Real-Time Human Pose Estimation from Body-Scanned Point Clouds
2015
International audience; This paper presents a novel approach to estimate the human pose from a body-scanned point cloud. To do so, a predefined skeleton model is first initialized according to both the skeleton base point and its torso limb obtained by Principal Component Analysis (PCA). Then, the body parts are iteratively clustered and the skeleton limb fitting is performed, based on Expectation Maximization (EM). The human pose is given by the location of each skeletal node in the fitted skeleton model. Experimental results show the ability of the method to estimate the human pose from multiple point cloud video sequences representing the external surface of a scanned human body; being r…
Industrial Environment Mapping Using Distributed Static 3D Sensor Nodes
2018
This paper presents a system architecture for mapping and real-time monitoring of a relatively large industrial robotic environment of size 10 m × 15 m × 5 m. Six sensor nodes with embedded computing power and local processing of the 3D point clouds are placed close to the ceiling. The system architecture and data processing is based on the Robot Operating System (ROS) and the Point Cloud Library (PCL). The 3D sensors used are the Microsoft Kinect for Xbox One and point cloud data is collected at 20 Hz. A new manual calibration procedure is developed using reflective planes. The specified range of the used sensor is 0.8 m to 4.2 m, while depth data up to 9 m is used in this paper. Despite t…
Replication Data for: CNN-based People Detection in Voxel Space using Intensity Measurements and Point Cluster Flattening
2021
Dataset used to train and test a human classifier in the article "CNN-based People Detection in Voxel Space using Intensity Measurements and Point Cluster Flattening". The set contains both the raw point cloud data from an outdoor test site, as well as generated images used for training.
As-built graphic documentation of the Monumento a la Tolerancia. Validation of low-cost survey techniques
2020
[EN] The Monumento a la Tolerancia is an emblematic sculpture realized by Eduardo Chillida, a perfect example for the documentation of sculptures with uniform textures, non-reflective colours and with poorly elaborated shapes through the implementation of various photogrammetric tools, as well as using different applications for processing phase. The basic data are photos taken quickly and without an accurate previous study, which is why the implementation of any target was not foreseen. In order to prove the results different kind of analysis were conducted. The first type was carried out analysing the results obtained from different software, with the use of the same instrument. The secon…
Complete End-To-End Low Cost Solution To a 3D Scanning System with Integrated Turntable
2017
3D reconstruction is a technique used in computer vision which has a wide range of applications in areas like object recognition, city modelling, virtual reality, physical simulations, video games and special effects. Previously, to perform a 3D reconstruction, specialized hardwares were required. Such systems were often very expensive and was only available for industrial or research purpose. With the rise of the availability of high-quality low cost 3D sensors, it is now possible to design inexpensive complete 3D scanning systems. The objective of this work was to design an acquisition and processing system that can perform 3D scanning and reconstruction of objects seamlessly. In addition…
Ventricular Fibrillation and Tachycardia Detection Using Features Derived from Topological Data Analysis
2022
A rapid and accurate detection of ventricular arrhythmias is essential to take appropriate therapeutic actions when cardiac arrhythmias occur. Furthermore, the accurate discrimination between arrhythmias is also important, provided that the required shocking therapy would not be the same. In this work, the main novelty is the use of the mathematical method known as Topological Data Analysis (TDA) to generate new types of features which can contribute to the improvement of the detection and classification performance of cardiac arrhythmias such as Ventricular Fibrillation (VF) and Ventricular Tachycardia (VT). The electrocardiographic (ECG) signals used for this evaluation were obtained from…