Search results for "polariton"
showing 10 items of 162 documents
Tuning the propagation constant by the anti-crossing bandgap prism coupling technique.
2012
A novel plasmonic structure based on an anticrossing bandgap prism coupling technique is proposed. The study has been carried out using photonic crystals based on diffraction gratings (bounded by dielectrics with identical dielectric functions) together with a high refractive index prism to couple the long-range surface plasmon polaritons to photons. We analyse the structure and demonstrate the ability for tuning the propagation constants of plasmon modes by changing the thickness of the gold grating. The comparison to non-bandgap techniques is studied, and the influence of the plasmonic configuration on the plasmon propagation constant is discussed as well. Experimental measurements were a…
Efficient unidirectional polarization-controlled excitation of surface plasmon polaritons
2014
Efficient excitation of surface plasmon polaritons (SPPs) remains one of the most challenging issues in areas of plasmonics related to information communication technologies. In particular, combining high SPP excitation efficiency and acceptance of any polarization of incident light appeared to be impossible to attain due to the polarized nature of SPPs. Here we demonstrate plasmonic couplers that represent arrays of gap SPP resonators producing upon reflection two orthogonal phase gradients in respective linear polarizations of incident radiation. These couplers are thereby capable of efficiently converting incident radiation with arbitrary polarization into SPPs that propagate in orthogon…
Femtosecond time-resolved photoemission electron microscopy operated at sample illumination from the rear side
2019
We present an advanced experimental setup for time-resolved photoemission electron microscopy (PEEM) with sub-20 fs resolution, which allows for normal incidence and highly local sample excitation with ultrashort laser pulses. The scheme makes use of a sample rear side illumination geometry that enables us to confine the sample illumination spot to a diameter as small as 6 μm. We demonstrate an operation mode in which the spatiotemporal dynamics following a highly local excitation of the sample is globally probed with a laser pulse illuminating the sample from the front side. Furthermore, we show that the scheme can also be operated in a time-resolved normal incidence two-photon PEEM mode w…
Surface plasmon polariton propagation length: A direct comparison using photon scanning tunneling microscopy and attenuated total reflection
2001
The propagation of surface plasmon polaritons (SPP's) is studied using a photon scanning tunneling microscope (PSTM) and conventional attenuated total reflection (ATR). The PSTM experiment uses localized (focused beam) launching of SPP's at a wavelength of 632.8 nm. Propagation of the SPP is observed as an exponentially decaying tail beyond the launch site and the $1/e$ propagation length is measured directly for a series of Ag films of different thicknesses. The ATR measurements are used to characterize the thin film optical and thickness parameters, revealing, notably, the presence of a contaminating adlayer of ${\mathrm{Ag}}_{2}\mathrm{S}$ of typical dielectric function, $8.7+i2.7,$ and …
Surface plasmon polaritons in metal stripes and wires
2004
Surface plasmon polaritons (SPPs) are collective electron oscillations coupled to a light field which are propagating along the interface of a metal and a dielectric. As a surface wave, SPP modes feature properties essentially different from light-field modes in all dielectric structures. These properties could allow the realization of novel photonic devices that overcome certain limitations of conventional devices. Specifically, the realization of two-dimensional optics and light-field transport in sub-wavelength SPP waveguides seems feasible. In this review we discuss recent experimental advances regarding SPP waveguides, i.e. laterally confined metal thin films that guide SPPs. Electron-…
Direct observation of localized surface plasmon coupling
1999
We report on the direct observation of localized surface plasmon coupling using a photon scanning tunneling microscope. The surface plasmons are excited in gold nanostructures tailored by electron beam lithography. Electromagnetic energy transfer from a resonantly excited nanoparticle to a nanowire, which is not directly excited by the incident light is observed. Our experimental results appear to be in good agreement with theoretical computations based on Green's dyadic technique.
Local excitation of surface plasmon polaritons at discontinuities of a metal film: Theoretical analysis and optical near-field measurements
2002
Nonresonant excitation of surface plasmon polaritons at discontinuities of a gold film is numerically studied and experimentally observed with scanning near-field optical microscopy. It is shown that surface polaritons can be effectively launched at the edges of a metal film illuminated at an angle of incidence greater than the resonant angle of surface polariton excitation. The electromagnetic near-field distribution over a thin metal film exhibits significantly different features under resonant and nonresonant excitations due to different surface polariton excitation mechanisms. In the latter case the field distribution is determined by the interference of the excitation light and surface…
Controlling Light Confinement by Excitation of Localized Surface Plasmons
2007
Localized surface plasmons can be used to control near-field optical phenomena in the subwavelength range. Specifically, this chaper reviews recent results which show that localized surface plasmons can confine the optical intensity down to nanoscopic dimensions. The discussion first considers how a collection-mode near-field optical microscope can observe the squeezing of the plasmon field of metallic nanostructures deposited on a flat surface. Numerical simulations then provide illustrations of the confined fields associated with nanostructures which are feasible using current microfabrication techniques. Finally, we present arguments which explain how localized surface plasmons can deliv…
Mapping surface plasmon propagation by collection-mode near-field microscopy
2011
Surface plasmon propagation along striped Gold structures has been investigated by collection-mode near-field microscopy, leading to map the field intensity at the structure surface and to assess the system behavior at the nanoscale.