Search results for "polarization-maintaining"
showing 10 items of 103 documents
Manakov Polarization Modulation Instability in Normal Dispersion Optical Fiber
2014
We observed polarization modulation instability in the normal dispersion regime of randomly birefringent multi-km telecom optical fiber. The instability is pumped by two wavelength multiplexed and orthogonally polarized intense continuous lasers.
Transverse effects in ring fiber laser multimode instabilities
2000
We study the influence of the transverse structure of pump and lasing fields and of the width of the doped region on the conditions for the appearance of the multimode instability in an ${\mathrm{Er}}^{3+}$-doped ring fiber laser. We show that the instability can be inhibited while maintaining a large output power when the radius of the doped region is a fraction of the core radius.
An optical pulse modulator based on an all-fiber mirror
1996
Observation of induced modulational polarization instabilities and pulse-train generation in the normal-dispersion regime of a birefringent optical f…
1998
Four-photon mixing in a low-birefringence fiber is strongly influenced by the orientation of the pump and signal waves with respect to the fiber axes. We experimentally investigated the dependence of the modulational gain spectra on pump power and polarization by mixing orthogonal pump and probe light beams in a birefringent optical fiber. With a pump on the fast fiber axis, a cascade of sidebands was generated in the regime of normal fiber dispersion. These sidebands are shown to correspond to 0.2–0.3-THz trains of pulses with complex polarization profiles. The analysis reveals that, at particular values of the input pump and probe powers and signal frequency detuning, trains of dark-solit…
Self-referenced phase reconstruction proposal of Ghz bandwidth non-periodical optical pulses by in-fiber semi-differintegration
2011
Abstract We propose two new techniques able to retrieve the phase profile of a given temporal optical pulse based on the use of in-fiber semi-differintegral operators, where by semi-differintegration we mean either a 0.5th-order differentiation or integration. In both cases, the signal's temporal phase can be obtained by simple dividing two temporal intensity profiles, namely the intensities of the input and output pulses of a spectrally shifted semi-differintegral operator. In both cases, we obtained simple analytical expressions for the phase profile. The techniques are self-referenced and well-suited for real-time applications. We numerically prove the viability of these proposals.
Quantized separations of phase-locked soliton pairs in fiber lasers
2003
Quantized separations of phase-locked soliton pairs in fiber lasers were presented. The relation between the Kelly sidebands and the quantized separations between solitons was confirmed. Simulation results showed that the solitons can see each other at relatively larger distances than they would in the absence of radiation.
Observation of Manakov polarization modulation instability in the normal dispersion regime of randomly birefringent telecom optical fiber
2014
Large-signal enhanced frequency conversion in birefringent optical fibers: theory and experiments
1998
Strong frequency conversion among light waves propagating in a low-birefringence optical fiber in the normal-dispersion regime is experimentally investigated. Modulational gain spectra are obtained by injection of a signal orthogonally polarized with respect to a pump beam aligned with the slow fiber axis. Measurements reveal that, for signal power levels above a certain threshold value, peak conversion is obtained at pump signal frequency detunings far from the phase-matching condition. The large-signal three-wave mixing regime is well described by integrable nonlinear coupled-wave equations.
A universal all-fiber omnipolarizer
2013
The all-optical control of light polarization is nowadays a fundamental issue which finds important applications in optical networks. In this field, the research has moved on the development of nonlinear methods of re-polarization of a partially coherent and initially depolarized light [1]. The main drawback of most of these devices is that they suffer from a large amount of output Relative-Intensity-Noise (RIN). However, a class of polarizers have been recently proposed which is based on the nonlinear interaction between two optical beams counter-propagating in a fiber [2]: in these devices the arbitrary state of polarization (SOP) of one of the two beams (signal) is attracted towards a sp…
A universal all-fiber Omnipolarizer
2014
We report the experimental observation of self-polarization of light in optical fibers through a counter-propagating four-wave mixing between an incident signal and its backward replica. An efficient self-polarization of a 40-Gbit/s signal is demonstrated.