Search results for "polarization."

showing 10 items of 1842 documents

XIPE: the X-ray imaging polarimetry explorer

2013

arXiv:1309.6995v1.-- et al.

AstronomyAstrophysics::High Energy Astrophysical PhenomenaPolarimetryFOS: Physical sciencesAstrophysics7. Clean energy01 natural scienceslaw.inventionX-raySettore FIS/05 - Astronomia E Astrofisicalaw0103 physical sciencesPolarimetry010303 astronomy & astrophysicsInstrumentation and Methods for Astrophysics (astro-ph.IM)Solar and Stellar Astrophysics (astro-ph.SR)Astronomy X-ray PolarimetryPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Solar flare[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph]010308 nuclear & particles physics[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]White dwarfAstronomy and AstrophysicsTorusMagnetic reconnectionPolarization (waves)Neutron starAstrophysics - Solar and Stellar Astrophysics13. Climate actionSpace and Planetary Science[SDU]Sciences of the Universe [physics]Astrophysics::Earth and Planetary AstrophysicsAstrophysics - High Energy Astrophysical PhenomenaAstrophysics - Instrumentation and Methods for AstrophysicsFlare
researchProduct

Search for Tensor, Vector, and Scalar Polarizations in the Stochastic Gravitational-Wave Background

2018

The detection of gravitational waves with Advanced LIGO and Advanced Virgo has enabled novel tests of general relativity, including direct study of the polarization of gravitational waves. While general relativity allows for only two tensor gravitational-wave polarizations, general metric theories can additionally predict two vector and two scalar polarizations. The polarization of gravitational waves is encoded in the spectral shape of the stochastic gravitational-wave background, formed by the superposition of cosmological and individually-unresolved astrophysical sources. Using data recorded by Advanced LIGO during its first observing run, we search for a stochastic background of generic…

AstronomyTestingdetectionGeneral Physics and AstronomyEFFICIENTTESTING RELATIVISTIC GRAVITYTensorsSpectral shapes01 natural sciencesGeneral Relativity and Quantum CosmologyGravitational wave backgroundEnergy densityTOOLQCComputingMilieux_MISCELLANEOUSstochastic modelMathematical physicsQBPhysics[PHYS]Physics [physics]Stochastic systemsGravitational effectsarticleVectorsPolarization (waves)gravitational wavesastro-ph.CO[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]Astrophysics - Cosmology and Nongalactic AstrophysicsGeneral RelativityCosmology and Nongalactic Astrophysics (astro-ph.CO)General relativitygr-qcFOS: Physical sciencesexperimental studies of gravityGeneral Relativity and Quantum Cosmology (gr-qc)Gravity wavesRelativityReference frequencyPhysics and Astronomy (all)General Relativity and Quantum CosmologyTheory of relativityScalar modesTests of general relativity0103 physical sciencesAdvanced LIGOddc:530Tensor010306 general physicsSTFCGravitational Wavespolarization010308 nuclear & particles physicsGravitational waveRCUKAstrophysical sourcesLIGOPhysics and AstronomygravitationRADIATIONStochastic BackgroundDewey Decimal Classification::500 | Naturwissenschaften::530 | Physik[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]cosmologyGravitational Waves Stochastic Background Advanced LIGO
researchProduct

High magnetic fields for fundamental physics

2018

Various fundamental-physics experiments such as measurement of the birefringence of the vacuum, searches for ultralight dark matter (e.g., axions), and precision spectroscopy of complex systems (including exotic atoms containing antimatter constituents) are enabled by high-field magnets. We give an overview of current and future experiments and discuss the state-of-the-art DC- and pulsed-magnet technologies and prospects for future developments.

Astrophysics and AstronomyPhysics - Instrumentation and Detectorsmagnet: designmagnetic field: highAtomic Physics (physics.atom-ph)AxionsDark matterComplex systemOther Fields of PhysicsFOS: Physical sciencesGeneral Physics and Astronomy01 natural sciencesphysics.atom-phNOPhysics - Atomic PhysicsNuclear physicsPhysics and Astronomy (all)Neutrino mass0103 physical sciencesDark matter[ PHYS.PHYS.PHYS-GEN-PH ] Physics [physics]/Physics [physics]/General Physics [physics.gen-ph]Axions; Dark matter; High-field magnets; Neutrino mass; Spectroscopy; Vacuum birefringence; Physics and Astronomy (all)[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Detectors and Experimental Techniques010306 general physicsInstrumentation and Methods for Astrophysics (astro-ph.IM)[ PHYS.PHYS.PHYS-INS-DET ] Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Axionphysics.ins-detSpectroscopyactivity reportExotic atomPhysicsVacuum birefringence010308 nuclear & particles physicsInstrumentation and Detectors (physics.ins-det)Polarization (waves)magnet: technology[PHYS.PHYS.PHYS-GEN-PH]Physics [physics]/Physics [physics]/General Physics [physics.gen-ph]3. Good healthMagnetic fieldHigh-field magnetsAntimatterMagnetAstrophysics - Instrumentation and Methods for Astrophysicsastro-ph.IM
researchProduct

ALMA full polarization observations of PKS1830-211 during its record-breaking flare of 2019

2020

We report Atacama Large Millimeter Array (ALMA) Band 6 full-polarization observations of the lensed blazar PKS 1830-211 during its record-breaking radio and gamma-ray flare in the spring of 2019. The observations were taken close to the peak of the gamma activity and show a clear difference in polarization state between the two time-delayed images. The leading image has a fractional polarization about three times lower than the trailing image, implying that significant depolarization occurred during the flare. In addition, we observe clear intra-hour variability of the polarization properties between the two lensed images, with a quasi-linear increase in the differential electric-vector pos…

Astrophysics::High Energy Astrophysical PhenomenaGamma rays: generalgeneral [Gamma rays]FOS: Physical sciencesQuasars: individual: PKS1830-211AstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural scienceslaw.inventionlawPolarization0103 physical sciencesindividual: PKS1830-211 [Quasars]Blazar010303 astronomy & astrophysicsPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)010308 nuclear & particles physicsAstronomy and AstrophysicsQuasarAtacama Large Millimeter ArrayPolarization (waves)Position angleFractional polarizationSpace and Planetary ScienceAstrophysics - High Energy Astrophysical PhenomenaFlare
researchProduct

Depolarization�ratio profiling at several wavelengths in pure Saharan dust during SAMUM 2006

2009

Vertical profiles of the linear particle depolarization ratio of pure dust clouds were measured during the Saharan Mineral Dust Experiment (SAMUM) at Ouarzazate, Morocco (30.9°N, –6.9°E), close to source regions in May–June 2006, with four lidar systems at four wavelengths (355, 532, 710 and 1064 nm). The intercomparison of the lidar systems is accompanied by a discussion of the different calibration methods, including a new, advanced method, and a detailed error analysis. Over the whole SAMUM periode pure dust layers show a mean linear particle depolarization ratio at 532 nm of 0.31, in the range between 0.27 and 0.35, with a mean Ångström exponent (AE, 440–870 nm) of 0.18 (range 0.04–0.34…

Atmospheric ScienceLidarMaterials science010504 meteorology & atmospheric sciencesSaharan dustbusiness.industryAnalytical chemistry010501 environmental sciencesMineral dust01 natural sciencesAerosolTroposphereSAMUMWavelengthOpticsLidardepolarizationExtinction (optical mineralogy)Depolarization ratioParticlebusiness0105 earth and related environmental sciences
researchProduct

2018

Abstract. Low planetary wave activity led to a stable vortex with exceptionally cold temperatures in the 2015–2016 Arctic winter. Extended areas with temperatures below the ice frost point temperature Tice persisted over weeks in the Arctic stratosphere as derived from the 36-year temperature climatology of the ERA-Interim reanalysis data set of the European Centre for Medium-Range Weather Forecasts (ECMWF). These extreme conditions promoted the formation of widespread polar stratospheric ice clouds (ice PSCs). The space-borne Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument on board the CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation) satellit…

Atmospheric Sciencegeographygeography.geographical_feature_category010504 meteorology & atmospheric sciencesAtmospheric sciences01 natural sciencesArctic ice pack010309 opticsArctic0103 physical sciencesFrostIce nucleusDepolarization ratioEnvironmental scienceHaloStratosphereWater vapor0105 earth and related environmental sciencesAtmospheric Chemistry and Physics
researchProduct

A Precise Photometric Ratio via Laser Excitation of the Sodium Layer II: Two-photon Excitation Using Lasers Detuned from 589.16 nm and 819.71 nm Reso…

2020

This article is the second in a pair of articles on the topic of the generation of a two-color artificial star (which we term a "laser photometric ratio star," or LPRS) of de-excitation light from neutral sodium atoms in the mesosphere, for use in precision telescopic measurements in astronomy and atmospheric physics, and more specifically for the calibration of measurements of dark energy using type Ia supernovae. The two techniques respectively described in both this and the previous article would each generate an LPRS with a precisely 1:1 ratio of yellow (589/590 nm) photons to near-infrared (819/820 nm) photons produced in the mesosphere. Both techniques would provide novel mechanisms f…

Atmospheric physicsPhotonCosmology and Nongalactic Astrophysics (astro-ph.CO)FOS: Physical sciencesAstrophysics::Cosmology and Extragalactic Astrophysicslaw.inventionTelescopetechniques: photometricsymbols.namesakeOpticslawAstrophysics::Solar and Stellar AstrophysicsRayleigh scatteringdark energyInstrumentation and Methods for Astrophysics (astro-ph.IM)Astrophysics::Galaxy AstrophysicsPhysicsbusiness.industryAstrophysics::Instrumentation and Methods for AstrophysicsSodium layerAstronomy and AstrophysicstelescopesPolarization (waves)Laser[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]instrumentation: miscellaneousWavelengthphotometric methods[SDU]Sciences of the Universe [physics]Space and Planetary SciencesymbolsAstrophysics::Earth and Planetary Astrophysicsmethods: observationalbusinesstechniquesAstrophysics - Instrumentation and Methods for AstrophysicsAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

High-order harmonic generation via bound-bound transitions in an elliptically polarized laser field

2016

We use a simplified five-level system to investigate the high-order harmonic generation (HHG) spectrum emitted by an atom driven by a linearly or elliptically polarized laser field. For this model, the Schrödinger equation is exactly analytically reduced to the system of ordinary differential equations, which is solved numerically. Studying the intensity and polarization of the emitted radiation, we find that under high laser ellipticity the harmonic emission is suppressed. However, the harmonic intensity typically depends nonmonotonously on the laser ellipticity. Such anomalous behavior is very pronounced for the resonant harmonic. We offer an explanation of this behavior based on the incr…

Atom Optics Harmonic Generation and Mixing PolarizationElliptical polarization01 natural sciencesSettore FIS/03 - Fisica Della MateriaSchrödinger equationlaw.invention010309 opticssymbols.namesakeOpticslaw0103 physical sciencesHigh harmonic generationPhysics::Atomic Physics010306 general physicsCircular polarizationPhysicsbusiness.industryNonlinear opticsStatistical and Nonlinear PhysicsPolarization (waves)LaserAtomic and Molecular Physics and OpticsQuantum electrodynamicsHarmonicssymbolsbusiness
researchProduct

ZERODUR based optical systems for quantum gas experiments in space

2019

Abstract Numerous quantum technologies make use of a microgravity environment e.g. in space. Operating in this extreme environment makes high demands on the experiment and especially the laser system regarding miniaturization and power consumption as well as mechanical and thermal stability. In our systems, optical modules consisting of ZERODUR® based optical benches with free-space optics are combined with fiber components. Suitability of the technology has been demonstrated in the successful sounding rocket missions FOKUS, KALEXUS and MAIUS-1. Here, we report on our toolkit for stable optical benches including mounts, fixed and adjustable mirrors as well as polarization maintaining fiber …

Atom interferometerComputer scienceAtomic Physics (physics.atom-ph)Aerospace EngineeringPhysics::OpticsFOS: Physical sciencesPolarization-maintaining optical fiberZerodur02 engineering and technology01 natural sciencesPhysics - Atomic Physicslaw.invention0203 mechanical engineeringlaw0103 physical sciencesInternational Space StationMiniaturizationAerospace engineering010303 astronomy & astrophysics020301 aerospace & aeronauticsSounding rocketbusiness.industryLaserQuantum technologybusinessPhysics - OpticsOptics (physics.optics)
researchProduct

Polarization-driven spin precession of mesospheric sodium atoms

2018

We report experimental results on the first on-sky observation of atomic spin precession of mesospheric sodium driven by polarization modulation of a continuous-wave laser. The magnetic resonance was remotely detected from the ground by observing the enhancement of induced fluorescence when the driving frequency approached the precession frequency of sodium in the mesosphere, between 85 km and 100 km altitude. The experiment was performed at La Palma, and the uncertainty in the measured Larmor frequency ($\approx$260 kHz) corresponded to an error in the geomagnetic field of 0.4 mG. The results are consistent with geomagnetic field models and with the theory of light-atom interaction in the …

Atomic Physics (physics.atom-ph)Sodiumchemistry.chemical_elementFOS: Physical sciences7. Clean energy01 natural scienceslaw.inventionPhysics::GeophysicsPhysics - Atomic Physics010309 opticsOpticslaw0103 physical sciencesPhysics::Atomic Physics010306 general physicsSpin (physics)Circular polarizationLarmor precessionPhysicsbusiness.industryLaserPolarization (waves)Atomic and Molecular Physics and OpticsMagnetic fieldEarth's magnetic fieldchemistryPhysics::Space PhysicsAstrophysics::Earth and Planetary AstrophysicsAtomic physicsbusiness
researchProduct