Search results for "polarization."

showing 10 items of 1842 documents

Bio-Inspired Polarization Vision Techniques for Robotics Applications

2015

Researchers have been inspired by nature to build the next generation of smart robots. Based on the mechanisms adopted by the animal kingdom, research teams have developed solutions to common problems that autonomous robots faced while performing basic tasks. Polarization-based behaviour is one of the most distinctive features of some species of the animal kingdom. Light polarization parameters significantly expand visual capabilities of autonomous robots. Polarization vision can be used for most tasks of color vision, like object recognition, contrast enhancement, camouflage breaking, and signal detection and discrimination. In this chapter, the authors briefly cover polarization-based vis…

Computer sciencebusiness.industryComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONComputer visionRoboticsArtificial intelligencePolarization (waves)business
researchProduct

Helical magnetic structure and the anomalous and topological Hall effects in epitaxial B20 Fe$_{1-y}$Co$_y$Ge films

2018

Epitaxial films of the B20-structure compound Fe1−yCoyGe were grown by molecular beam epitaxy on Si (111) substrates. The magnetization varied smoothly from the bulklike values of one Bohr magneton per Fe atom for FeGe to zero for nonmagnetic CoGe. The chiral lattice structure leads to a Dzyaloshinskii-Moriya interaction (DMI), and the films' helical magnetic ground state was confirmed using polarized neutron reflectometry measurements. The pitch of the spin helix, measured by this method, varies with Co content y and diverges at y∼0.45. This indicates a zero crossing of the DMI, which we reproduced in calculations using first-principles methods. We also measured the longitudinal and Hall r…

Condensed Matter - Materials ScienceMaterials scienceMagnetic structureSpin polarizationMagnetoresistanceMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciences02 engineering and technology021001 nanoscience & nanotechnologyTopology01 natural sciencesMagnetic fieldBohr magnetonMagnetizationsymbols.namesakeElectrical resistivity and conductivity0103 physical sciencessymbolsddc:530010306 general physics0210 nano-technologyGround state
researchProduct

Ab initio DFT+U study of He atom incorporation into UO(2) crystals.

2009

We present and discuss results of a density functional theory (DFT) study of a perfect UO2 crystals and He atoms in octahedral interstitial positions. We have calculated basic bulk crystal properties and He incorporation energies into the low temperature anti-ferromagnetic UO2 phase using several exchange-correlation functionals within the spin-polarized local density (LDA) and generalized gradient (GGA) approximations. In all these DFT calculations we included the on-site correlation corrections using the Hubbard model (DFT+U approach). We analysed a potential crystalline symmetry reduction and confirmed the presence of the Jahn-Teller effect in a perfect UO2. We discuss also the problem o…

Condensed Matter - Materials ScienceMaterials scienceSpin polarizationHubbard modelAb initioMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciencesGeneral Physics and AstronomyMolecular physicsCondensed Matter::Materials ScienceTetragonal crystal systemAtomPhysics::Atomic and Molecular ClustersSupercell (crystal)AntiferromagnetismCondensed Matter::Strongly Correlated ElectronsDensity functional theoryPhysical and Theoretical ChemistryPhysical chemistry chemical physics : PCCP
researchProduct

Slater-Pauling Rule and Curie-Temperature of Co$_2$-based Heusler compounds

2005

A concept is presented serving to guide in the search for new materials with high spin polarization. It is shown that the magnetic moment of half-metallic ferromagnets can be calculated from the generalized Slater-Pauling rule. Further, it was found empirically that the Curie temperature of Co$_2$ based Heusler compounds can be estimated from a seemingly linear dependence on the magnetic moment. As a successful application of these simple rules, it was found that Co$_2$FeSi is, actually, the half-metallic ferromagnet exhibiting the highest magnetic moment and the highest Curie temperature measured for a Heusler compound.

Condensed Matter - Materials ScienceMaterials scienceSpin polarizationMagnetic momentCondensed matter physicsMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciencesGeneral Physics and AstronomyNew materialsengineering.materialHeusler compoundCondensed Matter::Materials ScienceFerromagnetismSimple (abstract algebra)engineeringCurie temperatureCondensed Matter::Strongly Correlated Electrons
researchProduct

Direct method for calculating temperature-dependent transport properties

2015

We show how temperature-induced disorder can be combined in a direct way with first-principles scattering theory to study diffusive transport in real materials. Excellent (good) agreement with experiment is found for the resistivity of Cu, Pd, Pt (and Fe) when lattice (and spin) disorder are calculated from first principles. For Fe, the agreement with experiment is limited by how well the magnetization (of itinerant ferromagnets) can be calculated as a function of temperature. By introducing a simple Debye-like model of spin disorder parameterized to reproduce the experimental magnetization, the temperature dependence of the average resistivity, the anisotropic magnetoresistance and the spi…

Condensed Matter - Materials ScienceMaterials scienceSpin polarizationMagnetoresistanceCondensed matter physicsCondensed Matter - Mesoscale and Nanoscale PhysicsDirect methodMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciencesCondensed Matter PhysicsElectronic Optical and Magnetic MaterialsAdiabatic theoremMagnetizationFerromagnetismElectrical resistivity and conductivityMesoscale and Nanoscale Physics (cond-mat.mes-hall)Scattering theory
researchProduct

Application of elastostatic Green function tensor technique to electrostriction in cubic, hexagonal and orthorhombic crystals

2002

The elastostatic Green function tensor approach, which was recently used to treat electrostriction in numerical simulation of domain structure formation in cubic ferroelectrics, is reviewed and extended to the crystals of hexagonal and orthorhombic symmetry. The tensorial kernels appearing in the expressions for effective nonlocal interaction of electrostrictive origin are derived explicitly and their physical meaning is illustrated on simple examples. It is argued that the bilinear coupling between the polarization gradients and elastic strain should be systematically included in the Ginzburg-Landau free energy expansion of electrostrictive materials.

Condensed Matter - Materials ScienceMaterials scienceStructure formationComputer simulationElectrostrictionCondensed matter physicsHexagonal crystal systemMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciencesBilinear interpolationCondensed Matter PhysicsPolarization (waves)Condensed Matter::Materials ScienceGeneral Materials ScienceOrthorhombic crystal systemOrthorhombic symmetryJournal of Physics: Condensed Matter
researchProduct

Manifestation of dipole-induced disorder in self-assembly of ferroelectric and ferromagnetic nanocubes

2019

The authors thank Marjeta Maˇcek Kržmanc for many useful discussions. The financial support of M-ERA.NET Project Har-vEnPiez (Innovative nano-materials and architectures for integrated piezoelectric energy harvesting applications) is gratefully acknowledged. D.Z. acknowledges the support of the postdoctoral research program at the University of Latvia (Project No. 1.1.1.2/VIAA/1/16/072). The computing time of the LASC cluster was provided by the Institute of Solid State Physics (ISSP).

Condensed Matter - Materials ScienceMaterials scienceSuperlatticeMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciences02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnology01 natural sciencesFerroelectricity0104 chemical sciencesDipoleNanocrystalFerromagnetismChemical physics:NATURAL SCIENCES:Physics [Research Subject Categories]General Materials ScienceSelf-assembly0210 nano-technologyPolarization (electrochemistry)Perovskite (structure)
researchProduct

Domain-Enhanced Interlayer Coupling in Ferroelectric/Paraelectric Superlattices

2004

We investigate the ferroelectric phase transition and domain formation in a periodic superlattice consisting of alternate ferroelectric (FE) and paraelectric (PE) layers of nanometric thickness. We find that the polarization domains formed in the different FE layers can interact with each other via the PE layers. By coupling the electrostatic equations with those obtained by minimizing the Ginzburg-Landau functional we calculate the critical temperature of transition Tc as a function of the FE/PE superlattice wavelength and quantitatively explain the recent experimental observation of a thickness dependence of the ferroelectric transition temperature in KTaO3/KNbO3 strained-layer superlatti…

Condensed Matter - Materials SciencePhase transitionPotassium niobateMaterials scienceCondensed matter physicsSuperlatticeTransition temperatureMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciencesGeneral Physics and AstronomyDielectricPolarization (waves)FerroelectricityCondensed Matter - Other Condensed MatterCondensed Matter::Materials Sciencechemistry.chemical_compoundchemistryGinzburg–Landau theoryOther Condensed Matter (cond-mat.other)Physical Review Letters
researchProduct

AC Switching of Relaxor PLZT Ceramics

2005

The switching under application of bipolar ac field is studied by recording of the hysteresis loops in wide temperature and field range in PLZT x/65/35 ceramics. The qualitative difference of the shape of hysteresis loops above and below the freezing temperature is attributed to backswitching in relaxor phase due to the depolarization field produced by the bound charges located at the interphase boundaries. The application of the quasistatic approach to analysis of the experimental data allows us to obtain parameters of the distribution function of local coercive fields from the field dependence of the switching charge derivative on field.

Condensed Matter::Materials ScienceHysteresisDistribution functionMaterials scienceCondensed matter physicsField dependenceCommutationCoercivityCondensed Matter PhysicsPolarization (waves)Local fieldQuasistatic processElectronic Optical and Magnetic MaterialsFerroelectrics
researchProduct

Multiferroic BiFeO<inf>3</inf> for conductance control at the LaAlO<inf>3</inf>/SrTiO<inf>3</inf>-interface

2015

Multiferroic materials possessing both magnetic and ferroelectric order enable in principle to switch order parameters using not the direct reciprocal field, e.g. to switch the magnetization by an electric field or the electric polarization by a magnetic field. A recent breakthrough was achieved by the demonstration of the ferromagnetic switching of a Co layer with an electric field employing the multiferroic BiFeO 3 [1]. The latter material is a perovskite based oxide that shows stable ferro-electricity as well as an antiferromagnetic order at room temperature [2,3]. Due to a Dzyaloshinskii-Moriya interaction induced by rotation of oxygen octahedra leading to noncollinear Fe-O-Fe bonds a s…

Condensed Matter::Materials ScienceMagnetizationPolarization densityExchange biasMaterials scienceMagnetic domainFerromagnetismCondensed matter physicsElectric fieldAntiferromagnetismCondensed Matter::Strongly Correlated ElectronsFerroelectricity2015 IEEE Magnetics Conference (INTERMAG)
researchProduct