Search results for "polydnaviruses"
showing 3 items of 3 documents
Plant-phenotypic changes induced by parasitoid ichnoviruses enhance the performance of both unparasitized and parasitized caterpillars
2021
Early Access; International audience; There is increasing awareness that interactions between plants and insects can be mediated by microbial symbionts. Nonetheless, evidence showing that symbionts associated with organisms beyond the second trophic level affect plant-insect interactions are restricted to a few cases belonging to parasitoid-associated bracoviruses. Insect parasitoids harbor a wide array of symbionts which, like bracoviruses, can be injected into their herbivorous hosts to manipulate their physiology and behavior. Yet, the function of these symbionts in plant-based trophic webs remains largely overlooked. Here we provide the first evidence of a parasitoid-associated symbiont…
Parasitic wasp-associated symbiont affects plant-mediated species interactions between herbivores
2018
Abstract Microbial mutualistic symbiosis is increasingly recognised as a hidden driving force in the ecology of plant–insect interactions. Although plant-associated and herbivore-associated symbionts clearly affect interactions between plants and herbivores, the effects of symbionts associated with higher trophic levels has been largely overlooked. At the third-trophic level, parasitic wasps are a common group of insects that can inject symbiotic viruses (polydnaviruses) and venom into their herbivorous hosts to support parasitoid offspring development. Here, we show that such third-trophic level symbionts act in combination with venom to affect plant-mediated interactions by reducing colon…
Data from: Parasitic wasp-associated symbiont affects plant-mediated species interactions between herbivores
2018
Microbial mutualistic symbiosis is increasingly recognised as a hidden driving force in the ecology of plant–insect interactions. Although plant‐associated and herbivore‐associated symbionts clearly affect interactions between plants and herbivores, the effects of symbionts associated with higher trophic levels has been largely overlooked. At the third‐trophic level, parasitic wasps are a common group of insects that can inject symbiotic viruses (polydnaviruses) and venom into their herbivorous hosts to support parasitoid offspring development. Here, we show that such third‐trophic level symbionts act in combination with venom to affect plant‐mediated interactions by reducing colonisation o…