Search results for "polynomials"
showing 4 items of 144 documents
Recovering a variable exponent
2021
We consider an inverse problem of recovering the non-linearity in the one dimensional variable exponent $p(x)$-Laplace equation from the Dirichlet-to-Neumann map. The variable exponent can be recovered up to the natural obstruction of rearrangements. The main technique is using the properties of a moment problem after reducing the inverse problem to determining a function from its $L^p$-norms.
Embeddings of Danielewski hypersurfaces
2008
In this thesis, we study a class of hypersurfaces in $\mathbb{C}^3$, called \emph{Danielewski hypersurfaces}. This means hypersurfaces $X_{Q,n}$ defined by an equation of the form $x^ny=Q(x,z)$ with $n\in\mathbb{N}_{\geq1}$ and $\deg_z(Q(x,z))\geq2$. We give their complete classification, up to isomorphism, and up to equivalence via an automorphism of $\mathbb{C}^3$. In order to do that, we introduce the notion of standard form and show that every Danielewski hypersurface is isomorphic (by an algorithmic procedure) to a Danielewski hypersurface in standard form. This terminology is relevant since every isomorphism between two standard forms can be extended to an automorphism of the ambiant …
Growth of central polynomials of algebras with involution
2021
Let A be an associative algebra with involution ∗ over a field of characteristic zero. A central ∗-polynomial of A is a polynomial in non- commutative variables that takes central values in A. Here we prove the existence of two limits called the central ∗-exponent and the proper central ∗-exponent that give a measure of the growth of the central ∗-polynomials and proper central ∗-polynomials, respectively. Moreover, we compare them with the PI-∗-exponent of the algebra.
Bounds for Bessel functions
1989
We establish lower and upper bounds for the Bessel functionJ v (x) and the modified Bessel functionI v(x) of the first kind. Our chief tool is the differential equation satisfied by these functions.