Search results for "predicate logic"
showing 10 items of 170 documents
Sato's universal Grassmannian and group extensions
1991
An extension \(\widehat{GL}\) of the symmetry group GL of Sato's universal Grassmannian GM is constructed. The extension plays a similar role to that of the central extension \(\widehat{GL}_{{\text{res}}}\) in the approach of Segal and Wilson to τ functions and KP hierarchy. Our group G contains GLres as a subgroup and the associated τ function is a deformation of the usual τ function, leading to a deformed KP hierarchy. A relation to current algebra of Yang-Mills theory in 3+1 dimension is discussed.
UNIQUENESS OF THE EXTENSION OF 2-HOMOGENEOUS POLYNOMIALS
2009
Remark on integrable Hamiltonian systems
1980
An extension ton degrees of freedom of the fact is established that forn=1 the time and the energy constant are canonically conjugate variables. This extension is useful in some cases to get action-angle variables from the general solution of a given integrable Hamiltonian system. As an example the Delaunay variables are proved to be canonical.
Relations among Gauge and Pettis integrals for cwk(X)-valued multifunctions
2019
The aim of this paper is to study relationships among "gauge integrals" (Henstock, Mc Shane, Birkhoff) and Pettis integral of multifunctions whose values are weakly compact and convex subsets of a general Banach space, not necessarily separable. For this purpose we prove the existence of variationally Henstock integrable selections for variationally Henstock integrable multifunctions. Using this and other known results concerning the existence of selections integrable in the same sense as the corresponding multifunctions, we obtain three decomposition theorems. As applications of such decompositions, we deduce characterizations of Henstock and ${\mathcal H}$ integrable multifunctions, toget…
Sobolev homeomorphic extensions onto John domains
2020
Abstract Given the planar unit disk as the source and a Jordan domain as the target, we study the problem of extending a given boundary homeomorphism as a Sobolev homeomorphism. For general targets, this Sobolev variant of the classical Jordan-Schoenflies theorem may admit no solution - it is possible to have a boundary homeomorphism which admits a continuous W 1 , 2 -extension but not even a homeomorphic W 1 , 1 -extension. We prove that if the target is assumed to be a John disk, then any boundary homeomorphism from the unit circle admits a Sobolev homeomorphic extension for all exponents p 2 . John disks, being one sided quasidisks, are of fundamental importance in Geometric Function The…
Weighted estimates for diffeomorphic extensions of homeomorphisms
2019
Let $\Omega \subset \mbr^2$ be an internal chord-arc domain and $\varphi : \mbs^1 \rightarrow \partial \Omega$ be a homeomorphism. Then there is a diffeomorphic extension $h : \mbd \rightarrow \Omega$ of $\varphi .$ We study the relationship between weighted integrability of the derivatives of $h$ and double integrals of $\varphi$ and of $\varphi^{-1} .$
Sobolev Extension on Lp-quasidisks
2021
AbstractIn this paper, we study the Sobolev extension property of Lp-quasidisks which are the generalizations of classical quasidisks. After that, we also find some applications of this property.
Local Spectral Theory
2018
In this chapter we shall introduce an important property, defined for bounded linear operators on complex Banach spaces, the so-called single-valued extension property (SVEP).
Some spectral mapping theorems through local spectral theory
2004
The spectral mapping theorems for Browder spectrum and for semi-Browder spectra have been proved by several authors [14], [29] and [33], by using different methods. We shall employ a local spectral argument to establish these spectral mapping theorems, as well as, the spectral mapping theorem relative to some other classical spectra. We also prove that ifT orT* has the single-valued extension property some of the more important spectra originating from Fredholm theory coincide. This result is extended, always in the caseT orT* has the single valued extension property, tof(T), wheref is an analytic function defined on an open disc containing the spectrum ofT. In the last part we improve a re…
Traces of weighted function spaces: dyadic norms and Whitney extensions
2017
The trace spaces of Sobolev spaces and related fractional smoothness spaces have been an active area of research since the work of Nikolskii, Aronszajn, Slobodetskii, Babich and Gagliardo among others in the 1950's. In this paper we review the literature concerning such results for a variety of weighted smoothness spaces. For this purpose, we present a characterization of the trace spaces (of fractional order of smoothness), based on integral averages on dyadic cubes, which is well adapted to extending functions using the Whitney extension operator.