Search results for "prestressed concrete"
showing 10 items of 11 documents
Bending-Shear interaction domains for externally prestressed concrete girders
2013
In prestressed concrete structures, the evaluation of the safety level is generally carried out by separating the bending moment strength and the shear force capacity. Actually interaction between bending moment (M) and shear force (V) can have significant consequences on evaluations in service life, especially when the ultimate limit state (ULS) is considered. In this paper, the M-V interaction is addressed for prestressed concrete girders, in the cases of both bonded and unbonded prestressing tendons. It can be demonstrated, by drawing the interaction domains (M-V), that a significant reduction of the safety level has to be considered when shear force is evaluated together with bending mo…
Increasing the Capacity of Existing Bridges by Using Unbonded Prestressing Technology: A Case Study
2014
External posttensioning or unbonded prestressing was found to be a powerful tool for retrofitting and for increasing the life extension of existing structures. Since the 1950s, this technique of reinforcement was applied with success to bridge structures in many countries, and was found to provide an efficient and economic solution for a wide range of bridge types and conditions. Unbonded prestressing is defined as a system in which the post-tensioning tendons or bars are located outside the concrete cross-section and the prestressing forces are transmitted to the girder through the end anchorages, deviators, or saddles. In response to the demand for a faster and more efficient transportati…
Conceptual design of prestressed slab bridges through one-way flexural load balancing
2013
In this paper a study on prestressed concrete slab bridges is presented. A design philosophy based on the concept of load balancing through prestressing is proposed in order to minimize the effects of delayed deformations due to creep. Aspects related to the stress redistribution inside these bridges for time-dependent phenomena are analyzed and discussed, by applying the principles of aging linear visco-elasticity. Prestressing is seen as an equivalent external load which counterbalances the permanent loads applied to the bridge, nullifying the elastic deflections due to sustained loads, and thus avoiding the related delayed deformations. An optimization of the structural behavior through …
Failure by corrosion in PC bridges: A case history of a viaduct in Italy
2016
Purpose The paper illustrates a viaduct collapse due to corrosion phenomena. Moreover, a contribution to the issues related to both the control of existing structures and design methods to be followed for the construction of new buildings is provided. Design/methodology/approach The objectives were achieved by in situ observations and numerical analyses. The effects of corrosion phenomena are investigated, and the progressive collapse analysis is provided to be helpful in this case. Findings The damages induced by corrosion phenomena have caused the collapse of the viaduct taken in to account. The performed numerical analyses were able to reproduce the effects of corrosion in terms of redu…
Serviceability of segmental concrete arch-frame bridges built by cantilevering
2013
The evaluation of the safety degree in service life for a segmental prestressed concrete bridge built by the cantilever method presents different aspects related to strength, deformability, durability and to effects of time-dependent phenomena as creep and shrinkage. The case-study of a prestressed concrete frame bridge with inclined piers is presented, built by cantilevering, with precast segments. By considering the fundamental items of design and construction stages, the implications due to the arch effect in this static scheme are investigated, with respect to an equivalent bridge with a final scheme of continuous girder on vertical piers. The birth of a significant value of axial force…
Interaction between Longitudinal Shear and Transverse Bending in Prestressed Concrete Box Girders
2017
In box girder bridges, the quantity and distribution of reinforcement to be put in concrete elements of sections can be evaluated only by considering the deformation of the cross section in addition to the longitudinal analysis of the static scheme, establishing the entire state of stress of box sections. This leads to a need to evaluate the interaction between internal forces obtained by the global analysis and the ones obtained by the local analysis of the cross sections. The frame effect implies the elastic deformation of slabs and webs, whereas eccentrically applied loads lead to cross-section distortion with the loss of the box shape. Hence, the reinforcement is strongly influenced by …
Simplified Procedure for Evaluating the Effects of Creep and Shrinkage on Prestressed Concrete Girder Bridges and the Application of European and Nor…
2013
The effects of time-dependent phenomena on concrete prestressed girder bridges are investigated. The study concerns the case of bridges built directly in their final configuration and that of bridges built by a sequence of stages in which geometry, restraints, and loads vary until the final configuration is achieved. An analytical approach based on the principles of aging linear viscoelasticity and the age-adjusted effective modulus method is followed. The paper has two aims: the first is to provide an efficient and simplified tool for the evaluation of the structural response in the early stages of design; the second is to compare the results of the analyses on actual cases of bridges when…
Influence of axial force and corrosion on failure of prestressed concrete structures considering M-V interaction
2021
Abstract Existing prestressed concrete structures suffer from degradation of prestressing for two main reasons: a defect of the sheath infills (cement grout) of bonded tendons, and corrosion of steel strands. These two causes, often concomitant, lead to a reduction over time of the effectiveness of initial prestressing, in addition to the ordinary tension losses due to concrete shrinkage and creep, and to steel relaxation. In many cases a consequence of bad grouting in bonded tendons is that the structure shows an intermediate behavior between that of external prestressing and that of internal bonded prestressing. This, added to damage to wires due to corrosion, makes it essential for the d…
Design procedure for prestressed concrete beams
2014
Abstract. The theoretical basis and the main results of a design procedure, which attempts to provide the optimal layout of ordinary reinforcement in prestressed concrete beams, subjected to bending moment and shear force are presented. The difficulties encountered in simulating the actual behaviour of prestressed concrete beam in presence of coupled forces bending moment - shear force are discussed; particular emphasis is put on plastic models and stress fields approaches. A unified model for reinforced and prestressed concrete beams under axial force - bending moment - shear force interaction is provided. This analytical model is validated against both experimental results collected in li…
A Viscoelastic Model for the Long-Term Deflection of Segmental Prestressed Box Girders
2017
Most of segmental prestressed concrete box girders exhibit excessive multidecade deflections unforeseeable by past and current design codes. To investigate such a behavior, mainly caused by creep and shrinkage phenomena, an effective finite element (FE) formulation is presented in this article. This formulation is developed by invoking the stationarity of an energetic principle for linear viscoelastic problems and relies on the Bazant creep constitutive law. A case study representative of segmental prestressed concrete box girders susceptible to creep is also analyzed in the article, that is, the Colle Isarco viaduct. Its FE model, based on the aforementioned energetic formulation, was succ…