Search results for "processing."
showing 10 items of 8323 documents
Estimating Missing Information by Cluster Analysis and Normalized Convolution
2018
International audience; Smart city deals with the improvement of their citizens' quality of life. Numerous ad-hoc sensors need to be deployed to know humans' activities as well as the conditions in which these actions take place. Even if these sensors are cheaper and cheaper, their installation and maintenance cost increases rapidly with their number. We propose a methodology to limit the number of sensors to deploy by using a standard clustering technique and the normalized convolution to estimate environmental information whereas sensors are actually missing. In spite of its simplicity, our methodology lets us provide accurate assesses.
SVM-based classification of High resolution Urban Satellites Images using Dense SURF and Spectral Information
2018
Remote-sensing focusing on image classification knows a large progress and receives the attention of the remote-sensing community day by day. Combining many kinds of extracted features has been successfully applied to High resolution urban satellite images using support vector machine (SVM). In this paper, we present a methodology that is promoting a performed classification by using pixel-wise SURF description features combined with spectral information in Cielab space for the first time on common scenes of urban imagery. The proposed method gives a promising classification accuracy when compared with the two types of features used separately.
SAR Image Classification Combining Structural and Statistical Methods
2011
The main objective of this paper is to develop a new technique of SAR image classification. This technique combines structural parameters, including the Sill, the slope, the fractal dimension and the range, with statistical methods in a supervised image classification. Thanks to the range parameter, we define the suitable size of the image window used in the proposed approach of supervised image classification. This approach is based on a new way of characterising different classes identified on the image. The first step consists in determining relevant area of interest. The second step consists in characterising each area identified, by a matrix. The last step consists in automating the pr…
Changes in SO2 Flux Regime at Mt. Etna Captured by Automatically Processed Ultraviolet Camera Data
2019
We used a one-year long SO2 flux record, which was obtained using a novel algorithm for real-time automatic processing of ultraviolet (UV) camera data, to characterize changes in degassing dynamics at the Mt. Etna volcano in 2016. These SO2 flux records, when combined with independent thermal and seismic evidence, allowed for capturing switches in activity from paroxysmal explosive eruptions to quiescent degassing. We found SO2 fluxes 1.5−2 times higher than the 2016 average (1588 tons/day) during the Etna’s May 16−25 eruptive paroxysmal activity, and mild but detectable SO2 flux increases more than one month before its onset. The SO2 flux typically peaked during a lava fo…
Optimizing Gaussian Process Regression for Image Time Series Gap-Filling and Crop Monitoring
2020
Image processing entered the era of artificial intelligence, and machine learning algorithms emerged as attractive alternatives for time series data processing. Satellite image time series processing enables crop phenology monitoring, such as the calculation of start and end of season. Among the promising algorithms, Gaussian process regression (GPR) proved to be a competitive time series gap-filling algorithm with the advantage of, as developed within a Bayesian framework, providing associated uncertainty estimates. Nevertheless, the processing of time series images becomes computationally inefficient in its standard per-pixel usage, mainly for GPR training rather than the fitting step. To…
Comparison of SMOS and SMAP soil moisture retrieval approaches using tower-based radiometer data over a vineyard field
2014
International audience; The objective of this study was to compare several approaches to soil moisture (SM) retrieval using l-band microwave radiometry. The comparison was based on a brightness temperature (TB) data set acquired since 2010 by the L-band radiometer ELBARA-II over a vineyard field at the Valencia Anchor Station (VAS) site. ELBARA-II, provided by the European Space Agency (ESA) within the scientific program of the SMOS (Soil Moisture and Ocean Salinity) mission, measures multiangular TB data at horizontal and vertical polarization for a range of incidence angles (30°–60°). Based on a three year data set (2010–2012), several SM retrieval approaches developed for spaceborne miss…
Enhancing the retrieval of stream surface temperature from Landsat data
2019
International audience; Thermal images of water bodies often show a radiance gradient perpendicular to the banks. This effect is frequently due to mixed land and water thermal pixels. In the case of the Landsat images, radiance mixing can also affect pure water pixels due the cubic convolution resampling of the native thermal measurements. Some authors recommended a general-purpose margin of two thermal pixels to the banks or a minimum river width of three pixels, to avoid near bank effects in water temperature retrievals. Given the relatively course spatial resolution of satellite thermal sensors, the three pixel margin severely restricts their application to temperature mapping in many ri…
Modelling Complex Volume Shape Using Ellipsoid: Application to Pore Space Representation
2017
Natural shapes have complex volume forms that are usually difficult to model using simple analytical equations. The complexity of the representation is due to the heterogeneity of the physical environment and the variety of phenomena involved. In this study we consider the representation of the porous media. Thanks to the technological advances in Computed Topography scanners, the acquisition of images of complex shapes becomes possible. However, and unfortunately, the image data is not directly usable for simulation purposes. In this paper, we investigate the modeling of such shapes using a piece wise approximation of image data by ellipsoids. We propose to use a split-merge strategy and a…
FLEX/S3 Tandem Mission Performance Assessment: Evolution of the End-to-End Simulator Flex-E
2018
An End-to-end simulator (E2ES) is a tool to evaluate the performance of a satellite mission. Once a mission is approved for operation, E2ES evolves during Phase C/D to become a supporting tool for the development and validation of the ground data processor, as well as for simulating data sets to test the Prototype and Operational Processors. FLEX-E is the E2ES of the FLEX/Sentinel-3 tandem mission, which was selected in 2015 as ESA's eighth Earth Explorer. The FLEX-E evolution implies the consolidation of all the retrieval algorithms (e.g. fluorescence, reflectance, biophysical variables), the implementation of new scientific developments, as well the improvement of the co-registration proc…
Sun-Induced Chlorophyll Fluorescence I: Instrumental Considerations for Proximal Spectroradiometers
2019
Growing interest in the proximal sensing of sun-induced chlorophyll fluorescence (SIF) has been boosted by space-based retrievals and up-coming missions such as the FLuorescence EXplorer (FLEX). The European COST Action ES1309 “Innovative optical tools for proximal sensing of ecophysiological processes” (OPTIMISE, ES1309; https://optimise.dcs.aber.ac.uk/) has produced three manuscripts addressing the main current challenges in this field. This article provides a framework to model the impact of different instrument noise and bias on the retrieval of SIF; and to assess uncertainty requirements for the calibration and characterization of state-of-the-art SIF-oriented spectroradiom…