Search results for "programmed cell death"

showing 10 items of 609 documents

E2F1 interacts with BCL-xL and regulates its subcellular localization dynamics to trigger cell death

2018

International audience; E2F1 is the main pro-apoptotic effector of the pRB-regulated tumor suppressor pathway by promoting the transcription of various pro-apoptotic proteins. We report here that E2F1 partly localizes to mitochondria, where it favors mitochondrial outer membrane permeabilization. E2F1 interacts with BCL-xL independently from its BH3 binding interface and induces a stabilization of BCL-xL at mitochondrial membranes. This prevents efficient control of BCL-xL over its binding partners, in particular over BAK resulting in the induction of cell death. We thus identify a new, non-BH3-binding regulator of BCL-xL localization dynamics that influences its anti-apoptotic activity.

0301 basic medicineProgrammed cell deathTranscription Geneticbcl-X ProteinRegulatorBcl-xL[SDV.CAN]Life Sciences [q-bio]/CancerBCL-xL mobilityMitochondrionBiochemistrylaw.invention[ SDV.CAN ] Life Sciences [q-bio]/CancerE2F1 Subject Category Autophagy & Cell Death03 medical and health sciences[SDV.CAN] Life Sciences [q-bio]/CancerlawBCL-2 familyCell Line TumorGeneticsJournal ArticleHumansE2F1Molecular BiologyCell DeathbiologyManchester Cancer Research CentreEffectorChemistryResearchInstitutes_Networks_Beacons/mcrcScientific ReportsapoptosisSubcellular localizationMitochondriaCell biologyProtein Transportbcl-2 Homologous Antagonist-Killer Protein030104 developmental biologyGene Expression RegulationProto-Oncogene Proteins c-bcl-2biology.proteinSuppressorbiological phenomena cell phenomena and immunityExtracellular SpaceE2F1 Transcription FactorProtein Binding
researchProduct

The dissociation of the Hsp60/pro-Caspase-3 complex by bis(pyridyl)oxadiazole copper complex (CubipyOXA) leads to cell death in NCI-H292 cancer cells

2017

Abstract Cell survival and proliferation are central to carcinogenesis, involving various mechanisms among which those that impede apoptosis are important. In this, the role of the molecular chaperone Hsp60 is unclear since it has been reported that it can be both, pro- or anti-apoptotic. A solution to this riddle is crucial to the development of anti-cancer therapies targeting Hsp60. We addressed this question using a tumor cell line, NCI-H292, and [Cu(3,5-bis(2′-pyridyl)-1,2,4-oxadiazole) 2 (H 2 O) 2 ](ClO 4 ) 2 , CubipyOXA , a copper-containing compound with cytotoxic properties. We treated cells with various doses of the compound and measured cell viability; apoptosis indicators; and le…

0301 basic medicineProgrammed cell deathanimal structuresApoptosischemical and pharmacologic phenomenaCaspase 3medicine.disease_causecomplex mixturesBiochemistryMitochondrial ProteinsHsp60/pC3 complexInorganic Chemistry03 medical and health sciences0302 clinical medicineCoordination ComplexesCell Line TumorNeoplasmsCubipyOXAmedicineHumansCytotoxic T cellViability assayCancerOxadiazolesCaspase 3ChemistryfungiApoptosiChaperonin 60Hsp60Neoplasm ProteinsCell biology030104 developmental biologyApoptosisPro-caspase-3 (pC3)Multiprotein Complexes030220 oncology & carcinogenesisCancer cellHSP60Apoptosis; Cancer; CubipyOXA; Hsp60; Hsp60/pC3 complex; Pro-caspase-3 (pC3); Biochemistry; Inorganic ChemistryCarcinogenesisCopper
researchProduct

Fold formation at the compartment boundary of Drosophila wing requires Yki signaling to suppress JNK dependent apoptosis

2016

AbstractCompartment boundaries prevent cell populations of different lineage from intermingling. In many cases, compartment boundaries are associated with morphological folds. However, in the Drosophila wing imaginal disc, fold formation at the anterior/posterior (A/P) compartment boundary is suppressed, probably as a prerequisite for the formation of a flat wing surface. Fold suppression depends on optomotor-blind (omb). Omb mutant animals develop a deep apical fold at the A/P boundary of the larval wing disc and an A/P cleft in the adult wing. A/P fold formation is controlled by different signaling pathways. Jun N-terminal kinase (JNK) and Yorkie (Yki) signaling are activated in cells alo…

0301 basic medicineProgrammed cell deathanimal structuresMAP Kinase Kinase 4CellMutantApoptosisBiologyArticle03 medical and health sciences0302 clinical medicinemedicineAnimalsDrosophila ProteinsWings AnimalBody PatterningMultidisciplinaryWingKinaseGene Expression Regulation DevelopmentalNuclear ProteinsYAP-Signaling ProteinsAnatomyCell biologyImaginal discDrosophila melanogaster030104 developmental biologymedicine.anatomical_structureImaginal DiscsApoptosisTrans-ActivatorsSignal transduction030217 neurology & neurosurgerySignal TransductionScientific Reports
researchProduct

Sicilian Litchi Fruit Extracts Induce Autophagy versus Apoptosis Switch in Human Colon Cancer Cells

2018

Litchi chinensis Sonnerat is a tropical tree whose fruits contain significant amounts of bioactive polyphenols. Litchi cultivation has recently spread in Sicily where the climate conditions are particularly favorable for this crop. Recent findings have shown that Litchi extracts display anti-tumor and pro-apoptotic effects in vitro, but the precise underlying mechanisms have not been fully elucidated. In this study, we report for the first time the effects of Sicilian litchi fruit extracts on colon cancer cells. The results indicated that litchi exocarp, mesocarp and endocarp fractions reduce the viability and clonogenic growth of HT29 cells. These effects were due to cell cycle arrest in t…

0301 basic medicineProgrammed cell deathautophagyCell cycle checkpointAtg1Apoptosislcsh:TX341-641Litchi chinensisArticle03 medical and health sciencesHT29 Cells0302 clinical medicineLitchiSettore BIO/10 - BiochimicaHumansClonogenic assaySicilyNutrition and DieteticsPlant ExtractsChemistryKinaseAutophagyPolyphenolsLitchi chinensiCell Cycle CheckpointsAntineoplastic Agents PhytogenicCell biology030104 developmental biologycolon cancerApoptosisFruit030220 oncology & carcinogenesisColonic Neoplasmsanti-tumor activityCaco-2 Cells<i>Litchi chinensis</i>HT29 Cellslcsh:Nutrition. Foods and food supplyPhytotherapySignal TransductionFood ScienceNutrients
researchProduct

Regulation of Autophagic Signaling by Mechanical Loading and Inflammation in Human PDL Fibroblasts

2020

Autophagy (cellular self-consumption) is a crucial adaptation mechanism during cellular stress conditions. This study aimed to examine how this important process is regulated in human periodontal ligament (PDL) fibroblasts by mechanical and inflammatory stress conditions and whether the mammalian target of rapamycin (mTOR) signaling pathway is involved. Autophagy was quantified by flow cytometry. Qualitative protein phosphorylation profiling of the mTOR pathway was carried out. Effects of mTOR regulation were assessed by quantification of important synthesis product collagen 1, cell proliferation and cell death with real-time PCR and flow cytometry. Autophagy as a response to mechanical or …

0301 basic medicineProgrammed cell deathautophagyInflammationCatalysisArticlelcsh:ChemistryInorganic Chemistry03 medical and health sciences0302 clinical medicineinflammatory conditionsmedicineHumansProtein phosphorylationPhysical and Theoretical Chemistrylcsh:QH301-705.5Molecular BiologySpectroscopyPI3K/AKT/mTOR pathwayCells CulturedInflammationCell DeathCell growthChemistryOrganic ChemistryAutophagymechanical stress030206 dentistryGeneral MedicineFibroblastsComputer Science ApplicationsCell biologyorthodontic tooth movement030104 developmental biologylcsh:Biology (General)lcsh:QD1-999mammalian target of rapamycin (mTOR) signaling pathwayPhosphorylationStress Mechanicalmedicine.symptomSignal transductionSignal TransductionInternational Journal of Molecular Sciences
researchProduct

Protective function of autophagy during VLCFA-induced cytotoxicity in a neurodegenerative cell model

2019

Abstract In recent years, a particular interest has focused on the accumulation of fatty acids with very long chains (VLCFA) in the occurrence of neurodegenerative diseases such as Alzheimer's disease, multiple sclerosis or dementia. Indeed, it seems increasingly clear that this accumulation of VLCFA in the central nervous system is accompanied by a progressive demyelination resulting in death of neuronal cells. Nevertheless, molecular mechanisms by which VLCFA result in toxicity remain unclear. This study highlights for the first time in 3 different cellular models (oligodendrocytes 158 N, primary mouse brain culture, and patient fibroblasts) the types of cell death involved where VLCFA-in…

0301 basic medicineProgrammed cell deathendocrine system diseases[SDV]Life Sciences [q-bio]Very long chain fatty acidCellCentral nervous systemBiologymedicine.disease_causeBiochemistry03 medical and health scienceschemistry.chemical_compoundMice0302 clinical medicinePhysiology (medical)medicineAutophagyAnimalsHumansCells CulturedNeuronsMice Inbred BALB CCell DeathMultiple sclerosisAutophagyFatty AcidsBrainNeurodegenerative DiseasesFibroblastsmedicine.disease3. Good healthCell biologyOligodendrogliaOxidative Stress030104 developmental biologymedicine.anatomical_structurechemistryLipotoxicityReactive Oxygen Species030217 neurology & neurosurgeryOxidative stress
researchProduct

Leaf and Root Extracts from Campomanesia adamantium (Myrtaceae) Promote Apoptotic Death of Leukemic Cells via Activation of Intracellular Calcium and…

2017

Phytochemical studies are seeking new alternatives to prevent or treat cancer, including different types of leukemias. Campomanesia adamantium, commonly known as guavira or guabiroba, exhibits pharmacological properties including antioxidant, antimicrobial, and antiproliferative activities. Considering the anticancer potential of this plant species, the aim of this study was to evaluate the antileukemic activity and the chemical composition of aqueous extracts from the leaves (AECL) and roots (AECR) of C. adamantium and their possible mechanisms of action. The extracts were analyzed by LC-DAD-MS, and their constituents were identified based on the UV, MS, and MS/MS data. The AECL and AECR s…

0301 basic medicineProgrammed cell deathnatural productsbioprospectingCaspase 3PharmacologyJurkat cellsCalcium in biology03 medical and health scienceschemistry.chemical_compound0302 clinical medicinemedicinal plantcancerPharmacology (medical)Propidium iodideCytotoxicityCaspasePharmacologybiologylcsh:RM1-950LC-MSlcsh:Therapeutics. Pharmacology030104 developmental biologychemistryBiochemistryApoptosis030220 oncology & carcinogenesisbiology.proteinFrontiers in Pharmacology
researchProduct

Suicidal Erythrocyte Death in Metabolic Syndrome.

2021

Eryptosis is a coordinated, programmed cell death culminating with the disposal of cells without disruption of the cell membrane and the release of endocellular oxidative and pro-inflammatory milieu. While providing a convenient form of death for erythrocytes, dysregulated eryptosis may result in a series of detrimental and harmful pathological consequences highly related to the endothelial dysfunction (ED). Metabolic syndrome (MetS) is described as a cluster of cardiometabolic factors (hyperglycemia, dyslipidemia, hypertension and obesity) that increases the risk of cardiovascular complications such as those related to diabetes and atherosclerosis. In the light of the crucial role exerted …

0301 basic medicineProgrammed cell deathobesityhypertensionPhysiologyClinical BiochemistryReview030204 cardiovascular system & hematologyBioinformaticsmedicine.disease_causeBiochemistrymetabolic syndromeendothelial dysfunction03 medical and health sciences0302 clinical medicineDiabetes mellituseryptosisvascular damagemedicineoxidative stressEndothelial dysfunctionMolecular BiologyPathologicaldiabetesbusiness.industrylcsh:RM1-950dyslipidemiaCell Biologymedicine.diseaseObesitylcsh:Therapeutics. Pharmacology030104 developmental biologyMetabolic syndromeatherosclerosisbusinessDyslipidemiaOxidative stressAntioxidants (Basel, Switzerland)
researchProduct

Essential Oils, Pituranthos chloranthus and Teucrium ramosissimum, Chemosensitize Resistant Human Uterine Sarcoma MES-SA/Dx5 Cells to Doxorubicin by …

2021

The multidrug resistance phenotype is a global phenomenon and causes chemotherapy failure in various cancers, such as in uterine sarcomas that have a high mortality rate. To overcome this phenotype, there is growing research interest in developing new treatment strategies. In this study, we highlight the potential of two essential oils from the Apiaceae family, Pituranthos chloranthus (PC) and Teucrium ramosissimum Desf. (TR), to act as chemopreventive and chemosensitizing agents against two uterine sarcoma cell lines, MES-SA and P-gp-overexpressing MES-SA/Dx5 cells. We found that PC and TR were able to inhibit the cell viability of sensitive MES-SA and resistant MES-SA/Dx5 cells by a sligh…

0301 basic medicineProgrammed cell deathuterine sarcomaP-glycoproteindoxorubicin03 medical and health sciences0302 clinical medicinemedicineDoxorubicinTX341-641Viability assayessential oilsP-glycoproteinNutrition and DieteticsbiologyChemistryNutrition. Foods and food supplyCell cyclechemosensitization030104 developmental biologyApoptosisCell culture030220 oncology & carcinogenesisCancer researchbiology.proteinIntracellularFood Sciencemedicine.drugNutrients
researchProduct

Interleukin-17A Promotes Lung Tumor Progression through Neutrophil Attraction to Tumor Sites and Mediating Resistance to PD-1 Blockade

2017

Abstract Introduction Proinflammatory cytokine interleukin-17A (IL-17A) is overexpressed in a subset of patients with lung cancer. We hypothesized that IL-17A promotes a protumorigenic inflammatory phenotype and inhibits antitumor immune responses. Methods We generated bitransgenic mice expressing a conditional IL-17A allele along with conditional Kras G12D and performed immune phenotyping of mouse lungs, a survival analysis, and treatment studies with antibodies either blocking programmed cell death 1 (PD-1) or IL-6 or depleting neutrophils. To support the preclinical findings, we analyzed human gene expression data sets and immune profiled patient lung tumors. Results Tumors in IL-17:Kras…

0301 basic medicinePulmonary and Respiratory MedicineChemokineLung NeoplasmsNeutrophilsLymphocytemedicine.medical_treatmentProgrammed Cell Death 1 ReceptorGene ExpressionMice TransgenicGranulocytemedicine.disease_causeArticleProinflammatory cytokineProto-Oncogene Proteins p21(ras)Mice03 medical and health sciencesImmune systemAnimalsHumansMedicineLung cancerbiologybusiness.industryInterleukin-17medicine.disease030104 developmental biologymedicine.anatomical_structureCytokineOncologyMutationImmunologyDisease Progressionbiology.proteinKRASbusinessJournal of Thoracic Oncology
researchProduct