Search results for "propagator"
showing 10 items of 173 documents
Gluon and ghost propagators in the Landau gauge: Deriving lattice results from Schwinger-Dyson equations
2008
We show that the application of a novel gauge invariant truncation scheme to the Schwinger-Dyson equations of QCD leads, in the Landau gauge, to an infrared finite gluon propagator and a divergent ghost propagator, in qualitative agreement with recent lattice data.
Gluon mass and freezing of the QCD coupling
2007
Infrared finite solutions for the gluon propagator of pure QCD are obtained from the gauge-invariant non-linear Schwinger-Dyson equation formulated in the Feynman gauge of the background field method. These solutions may be fitted using a massive propagator, with the special characteristic that the effective mass employed drops asymptotically as the inverse square of the momentum transfer, in agreement with general operator-product expansion arguments. Due to the presence of the dynamical gluon mass the strong effective charge extracted from these solutions freezes at a finite value, giving rise to an infrared fixed point for QCD.
Definition of theΔmass and width
2007
In the framework of effective field theory we show that, at two-loop order, the mass and width of the $\ensuremath{\Delta}$ resonance defined via the (relativistic) Breit-Wigner parametrization both depend on the choice of field variables. In contrast, the complex-valued position of the pole of the propagator is independent of this choice.
Dual gauge-fixing property of the S matrix.
1996
The {ital S} matrix is known to be independent of the gauge-fixing parameter to all orders in perturbation theory. In this paper by employing the pinch technique we prove at one loop a stronger version of this independence. In particular, we show that one can use a gauge-fixing parameter for the gauge bosons inside quantum loops which is different from that used for the bosons outside loops, and the {ital S} matrix is independent of both. Possible phenomenological applications of this result are briefly discussed. {copyright} {ital 1996 The American Physical Society.}
Old and new physics interpretations of the NuTeV anomaly
2001
We discuss whether the NuTeV anomaly can be explained, compatibly with all other data, by QCD effects (maybe, if the strange sea is asymmetric, or there is a tiny violation of isospin), new physics in propagators or couplings of the vector bosons (not really), loops of supersymmetric particles (no), dimension six operators (yes, for one specific SU(2)-invariant operator), leptoquarks (not in a minimal way), extra U(1) gauge bosons (maybe: an unmixed Z' coupled to B-3L_mu also increases the muon g-2 by about 10^{-9} and gives a `burst' to cosmic rays above the GZK cutoff).
Effective gluon mass and infrared fixed point in QCD
2007
We report on a special type of solutions for the gluon propagator of pure QCD, obtained from the corresponding non-linear Schwinger-Dyson equation formulated in the Feynman gauge of the background field method. These solutions reach a finite value in the deep infrared and may be fitted using a massive propagator, with the crucial characteristic that the effective ``mass'' employed depends on the momentum transfer. Specifically, the gluon mass falls off as the inverse square of the momentum, as expected from the operator-product expansion. In addition, one may define a dimensionless quantity, which constitutes the generalization in a non-Abelian context of the universal QED effective charge.…
Isovector charges of the nucleon from 2+1-flavor QCD with clover fermions
2016
Physical review / D 95(7), 074508 (2017). doi:10.1103/PhysRevD.95.074508
QCD effective charges from lattice data
2010
We use recent lattice data on the gluon and ghost propagators, as well as the Kugo-Ojima function, in order to extract the non-perturbative behavior of two particular definitions of the QCD effective charge, one based on the pinch technique construction, and one obtained from the standard ghost-gluon vertex. The construction relies crucially on the definition of two dimensionful quantities, which are invariant under the renormalization group, and are built out of very particular combinations of the aforementioned Green's functions. The main non-perturbative feature of both effective charges, encoded in the infrared finiteness of the gluon propagator and ghost dressing function used in their…
THE OPERATOR PRODUCT EXPANSION OF THE QCD PROPAGATORS
1992
We bring together for the first time the coefficients in covariant gauges of all the condensates of dimension four or less in the operator product expansion (OPE) of the quark, gluon and ghost propagators. It is stressed that contrary to general belief the condensates do not enter the OPE of the propagators in gauge-invariant combinations like [Formula: see text] and 〈G2〉. The results are presented in arbitrary dimension to lowest order in the light quark masses for the SU (Nc) internal symmetry group. All terms which, through the equations of motion, may be viewed as being effectively of order αs are included. The importance of the equations of motion if one is to fulfill the Slavnov-Tayl…
Non local lagrangians(I): the pion
2005
We define a family of non local and chirally symmetric low energy lagrangians motivated by theoretical studies on Quantum Chromodynamics. These models lead to quark propagators with non trivial momentum dependencies. We define the formalism for two body bound states and apply it to the pion. We study the coupling of the photon and W bosons with special attention to the implementation of local gauge invariance. We calculate the pion decay constant recovering the Goldberger-Treiman and the Gell-Mann-Oakes-Renner relations. We recover a form of the axial current consistent with PCAC. Finally we study the pion form factor and we construct the operators involved in its parton distribution.