Search results for "protein conformation"

showing 10 items of 515 documents

A lipid transfer protein binds to a receptor involved in the control of plant defence responses

2001

AbstractLipid transfer proteins (LTPs) and elicitins are both able to load and transfer lipidic molecules and share some structural and functional properties. While elicitins are known as elicitors of plant defence mechanisms, the biological function of LTP is still an enigma. We show that a wheat LTP1 binds with high affinity sites. Binding and in vivo competition experiments point out that these binding sites are common to LTP1 and elicitins and confirm that they are the biological receptors of elicitins. A mathematical analysis suggests that these receptors could be represented by an allosteric model corresponding to an oligomeric structure with four identical subunits.

Models Molecular0106 biological sciencesTime FactorsProtein ConformationPlasma protein bindingLigands01 natural sciencesBiochemistryProtein structureStructural BiologyReceptorAllosteryTriticumComputingMilieux_MISCELLANEOUSPlant Proteins0303 health sciencesFungal proteinfood and beveragesCell biologyBiochemistryPlant lipid transfer proteinsAllosteric SiteProtein BindingReceptorPhytophthoraLipid transfer proteinAllosteric regulationBiophysics[SDV.BC]Life Sciences [q-bio]/Cellular BiologyBiologyBinding CompetitiveFungal Proteins03 medical and health sciencesTobaccoGeneticsBinding site[SDV.BC] Life Sciences [q-bio]/Cellular BiologyMolecular Biology030304 developmental biologyBinding SitesDose-Response Relationship DrugAlgal ProteinsCell MembraneElicitinCell BiologyAntigens PlantModels TheoreticalLipid MetabolismElicitinCarrier Proteins010606 plant biology & botanyFEBS Letters
researchProduct

A novel rat CVB1-VP1 monoclonal antibody 3A6 detects a broad range of enteroviruses

2018

AbstractEnteroviruses (EVs) are common RNA viruses that cause diseases ranging from rash to paralytic poliomyelitis. For example, EV-A and EV-C viruses cause hand-foot and mouth disease and EV-B viruses cause encephalitis and myocarditis, which can result in severe morbidity and mortality. While new vaccines and treatments for EVs are under development, methods for studying and diagnosing EV infections are still limited and therefore new diagnostic tools are required. Our aim was to produce and characterize new antibodies that work in multiple applications and detect EVs in tissues and in vitro. Rats were immunized with Coxsackievirus B1 capsid protein VP1 and hybridomas were produced. Hybr…

Models Molecular0301 basic medicineBiolääketieteet - BiomedicineProtein Conformationmedicine.drug_classImmunoelectron microscopylcsh:MedicineEnzyme-Linked Immunosorbent AssayCoxsackievirusmedicine.disease_causeMonoclonal antibodyenterovirusesArticleEpitopeEpitopesMice03 medical and health sciencesProtein DomainsEnterovirus InfectionsmedicineantibodiesAnimalsHumanslcsh:ScienceMultidisciplinary030102 biochemistry & molecular biologybiologyPolioviruslcsh:Rvasta-aineetAntibodies Monoclonalbiology.organism_classificationAntibodies NeutralizingImmunohistochemistryVirologyEnterovirus B HumanRats3. Good healthenterovirukset030104 developmental biologyKasvibiologia mikrobiologia virologia - Plant biology microbiology virologybiology.proteinImmunohistochemistrylcsh:QCapsid ProteinsAntibodyClone (B-cell biology)Protein BindingScientific Reports
researchProduct

Electrostatic Tuning of the Ligand Binding Mechanism by Glu27 in Nitrophorin 7

2018

AbstractNitrophorins (NP) 1–7 are NO-carrying heme proteins found in the saliva of the blood-sucking insect Rhodnius prolixus. The isoform NP7 displays peculiar properties, such as an abnormally high isoelectric point, the ability to bind negatively charged membranes, and a strong pH sensitivity of NO affinity. A unique trait of NP7 is the presence of Glu in position 27, which is occupied by Val in other NPs. Glu27 appears to be important for tuning the heme properties, but its influence on the pH-dependent NO release mechanism, which is assisted by a conformational change in the AB loop, remains unexplored. Here, in order to gain insight into the functional role of Glu27, we examine the ef…

Models Molecular0301 basic medicineConformational changeProtein ConformationMolecular biologylcsh:MedicineSangCrystallography X-RayLigands01 natural scienceschemistry.chemical_compoundProtein structureModelsZoologiaBloodsucking insectsNitrophorinStatic electricitylcsh:ScienceHemeCell receptorschemistry.chemical_classificationCrystallographyMultidisciplinaryParasitologiaAmino acidBloodRhodniusInsect ProteinsAnimals; Crystallography X-Ray; Glutamic Acid; Heme; Hemeproteins; Insect Proteins; Ligands; Models Molecular; Molecular Dynamics Simulation; Mutation; Protein Conformation; Rhodnius; Salivary Proteins and Peptides; Static ElectricityHemeproteinsHemeproteinStatic ElectricityGlutamic AcidHemeMolecular Dynamics Simulation010402 general chemistryArticle03 medical and health sciencesAnimalsSalivary Proteins and PeptidesBiologia molecularInsectes hematòfags030102 biochemistry & molecular biologylcsh:RMolecular0104 chemical sciencesIsoelectric pointchemistryMutationX-RayBiophysicslcsh:QReceptors cel·lularsParasitologyZoologyScientific Reports
researchProduct

Molecular evolutionary analysis of type-1 human astroviruses identifies putative sites under selection pressure on the capsid protein

2017

Human astroviruses (HAstV) are important enteric pathogens that can be classified into eight sero/genotypes (HAstV-1 to -8). Although the various HAstV types show global spread, type-1 strains tend to be predominant. Molecular analysis of the genomic region encoding the capsid protein (ORF2) has revealed discrete sequence variation, with different lineages within each HAstV type and at least three major lineages have been identified within HAstV-1. Longitudinal epidemiological surveillance has revealed temporal shift of the various HAstV-1 lineages. Metadata analysis of HAstV-1 sequences available in the databases also revealed temporal shifts of the circulation of HAstV-1 lineages, suggest…

Models Molecular0301 basic medicineMicrobiology (medical)Settore MED/07 - Microbiologia E Microbiologia ClinicaGenotypeProtein ConformationAstroviru030106 microbiologyBiologyMicrobiologyAstrovirusEvolution MolecularOpen Reading Frames03 medical and health sciencesProtein structureGeneticPhylogeneticsAstroviridae InfectionsGenetic variationGenotypePhylogenetic analyseGeneticsHumansAmino Acid SequenceSelection GeneticPeptide sequenceMolecular BiologyPhylogenyEcology Evolution Behavior and SystematicsGeneticsGenetic evolutionSelection pressure analysiGenetic Variationbiology.organism_classificationEcology Evolution Behavior and SystematicOpen reading frame030104 developmental biologyInfectious DiseasesCapsidAstroviridaeCapsid ProteinsCapsid protein structureHAstV-1
researchProduct

UV‐Vis Spectroscopy Reveals a Correlation Between Y263 and BV Protonation States in Bacteriophytochromes

2019

Red-light photosensory proteins, phytochromes, link light activation to biological functions by interconverting between two conformational states. For this, they undergo large-scale secondary and tertiary changes which follow small-scale Z to E bond photoisomerization of the covalently bound bilin chromophore. The complex network of amino acid interactions in the chromophore-binding pocket plays a central role in this process. Highly conserved Y263 and H290 have been found to be important for the photoconversion yield, while H260 has been identified as important for bilin protonation and proton transfer steps. Here, we focus on the roles these amino acids are playing in preserving the chemi…

Models Molecular0301 basic medicinePhotoisomerizationProtein ConformationStereochemistryProtonation010402 general chemistry01 natural sciencesBiochemistry03 medical and health scienceschemistry.chemical_compoundProtein structureMoleculeCloning MolecularPhysical and Theoretical ChemistryBilinchemistry.chemical_classificationBinding SitesPhytochromeSpectrum AnalysisGene Expression Regulation BacterialGeneral MedicineHydrogen-Ion ConcentrationChromophore0104 chemical sciencesAmino acid030104 developmental biologychemistryDeinococcusPhytochromePhotochemistry and Photobiology
researchProduct

Structural photoactivation of a full-length bacterial phytochrome

2016

Time-resolved x-ray solution scattering reveals the conformational signaling mechanism of a bacterial phytochrome.

Models Molecular0301 basic medicineProtein ConformationAstrophysics::High Energy Astrophysical Phenomena116 Chemical sciencesPhotoreceptors MicrobialphytochromesQuantitative Biology::Cell BehaviorStructure-Activity Relationship03 medical and health sciencesProtein structureBacterial ProteinsStructural BiologyDeinococcus radioduransBotanyResearch Articles219 Environmental biotechnologyMultidisciplinarybiologyPhytochromeHistidine kinaseta1182SciAdv r-articlesDeinococcus radioduransChromophorebiology.organism_classificationKineticsMicrosecond030104 developmental biologyStructural changephotoactivationBiophysicsPhytochromeFunction (biology)Research Article
researchProduct

All-atom simulations disentangle the functional dynamics underlying gene maturation in the intron lariat spliceosome

2018

The spliceosome (SPL) is a majestic macromolecular machinery composed of five small nuclear RNAs and hundreds of proteins. SPL removes noncoding introns from precursor messenger RNAs (pre-mRNAs) and ligates coding exons, giving rise to functional mRNAs. Building on the first SPL structure solved at near–atomic-level resolution, here we elucidate the functional dynamics of the intron lariat spliceosome (ILS) complex through multi-microsecond-long molecular-dynamics simulations of ∼1,000,000 atoms models. The ILS essential dynamics unveils (i) the leading role of the Spp42 protein, which heads the gene maturation by tuning the motions of distinct SPL components, and (ii) the critical particip…

Models Molecular0301 basic medicineProtein ConformationSplicingExonMolecular dynamicsRNA; gene maturation; molecular dynamics; spliceosome; splicingModelsRNA Small NuclearRNA PrecursorsMagnesiumPrincipal Component AnalysisMultidisciplinaryChemistrySpliceosomeFungalPhysical SciencesRNA splicingSpliceosomeRNA Splicing1.1 Normal biological development and functioningStatic ElectricityComputational biologyMolecular dynamicsMolecular Dynamics Simulation03 medical and health sciencesMotionsplicingU5 Small NuclearSmall NuclearGeneticUnderpinning researchSchizosaccharomycesGeneticsComputer SimulationGeneRibonucleoprotein U5 Small NuclearModels Geneticgene maturationIntronRNAMolecularRNA FungalRibonucleoproteinIntronsmolecular dynamicsRepressor Proteins030104 developmental biologyGene maturationHelixSpliceosomesRNANucleic Acid ConformationSchizosaccharomyces pombe ProteinsGeneric health relevancespliceosome
researchProduct

Metallothionein Gene Family in the Sea Urchin Paracentrotus lividus: Gene Structure, Differential Expression and Phylogenetic Analysis

2017

Metallothioneins (MT) are small and cysteine-rich proteins that bind metal ions such as zinc, copper, cadmium, and nickel. In order to shed some light on MT gene structure and evolution, we cloned seven Paracentrotus lividus MT genes, comparing them to Echinodermata and Chordata genes. Moreover, we performed a phylogenetic analysis of 32 MTs from different classes of echinoderms and 13 MTs from the most ancient chordates, highlighting the relationships between them. Since MTs have multiple roles in the cells, we performed RT-qPCR and in situ hybridization experiments to understand better MT functions in sea urchin embryos. Results showed that the expression of MTs is regulated throughout de…

Models Molecular0301 basic medicineProtein Conformationmetallothionein; multigene families; evolution; metal; echinoderms; embryonic development; gene expressionCatalysiGene OrderMetallothioneinSea urchinPhylogenySpectroscopyPhylogenetic treebiologyEchinodermMetalGene Expression Regulation DevelopmentalComputer Science Applications1707 Computer Vision and Pattern RecognitionExonsGeneral MedicineAnatomyMultigene familiemultigene familiesComputer Science ApplicationsCell biologymedicine.anatomical_structureMetalsMultigene FamilyParacentrotusEchinoderms; Embryonic development; Evolution; Gene expression; Metal; Metallothionein; Multigene families; Catalysis; Molecular Biology; Computer Science Applications1707 Computer Vision and Pattern Recognition; Spectroscopy; Physical and Theoretical Chemistry; Organic Chemistry; Inorganic ChemistryMesenchymeSettore BIO/11 - Biologia MolecolareIn situ hybridizationArticleCatalysisParacentrotus lividusInorganic Chemistry03 medical and health sciencesbiology.animalevolutionmedicineAnimalsGene familyProtein Interaction Domains and MotifsAmino Acid SequencePhysical and Theoretical ChemistryGeneMolecular BiologydevelopmentechinodermsOrganic Chemistrybiology.organism_classificationmetallothioneinAlternative Splicing030104 developmental biologyGene Expression RegulationEmbryonic developmentgene expression
researchProduct

On the polymer physics origins of protein folding thermodynamics

2016

A remarkable feature of the spontaneous folding of many small proteins is the striking similarity in the thermodynamics of the folding process. This process is characterized by simple two-state thermodynamics with large and compensating changes in entropy and enthalpy and a funnel-like free energy landscape with a free-energy barrier that varies linearly with temperature. One might attribute the commonality of this two-state folding behavior to features particular to these proteins (e.g., chain length, hydrophobic/hydrophilic balance, attributes of the native state) or one might suspect that this similarity in behavior has a more general polymer-physics origin. Here we show that this behavi…

Models Molecular0301 basic medicineProtein FoldingQuantitative Biology::BiomoleculesPolymersProtein ConformationChemistryEnthalpyTemperatureGeneral Physics and AstronomyEnergy landscapeThermodynamicsContact order03 medical and health sciences030104 developmental biologyNative statePolymer physicsProtein foldingDownhill foldingFolding funnelPhysical and Theoretical ChemistryThe Journal of Chemical Physics
researchProduct

Maintenance of a Protein Structure in the Dynamic Evolution of TIMPs over 600 Million Years

2016

Deciphering the events leading to protein evolution represents a challenge, especially for protein families showing complex evolutionary history. Among them, TIMPs represent an ancient eukaryotic protein family widely distributed in the animal kingdom. They are known to control the turnover of the extracellular matrix and are considered to arise early during metazoan evolution, arguably tuning essential features of tissue and epithelial organization. To probe the structure and molecular evolution of TIMPs within metazoans, we report the mining and structural characterization of a large data set of TIMPs over approximately 600 Myr. The TIMPs repertoire was explored starting from the Cnidaria…

Models Molecular0301 basic medicineTIMPsProtein familyProtein Conformationhomology modelingSettore BIO/11 - Biologia MolecolareSequence alignmentBiologytranscriptome wide analysisConserved sequencecnidariansEvolution MolecularCnidaria03 medical and health sciences0302 clinical medicineProtein structurePhylogeneticsMolecular evolutionGeneticsAnimalsTIMPAmino Acid SequenceHomology modelingcnidarianConserved SequencePhylogenyEcology Evolution Behavior and SystematicsGeneticsmyrTissue Inhibitor of Metalloproteinases030104 developmental biologyEvolutionary biologyTIMPs; cnidarians; homology modeling; transcriptome wide analysisSequence Alignment030217 neurology & neurosurgeryResearch Article
researchProduct