Search results for "proteolysis"

showing 10 items of 119 documents

Altered pore-forming properties of proteolytically nicked staphylococcal alpha-toxin

1993

Staphylococcal alpha-toxin is a single-chain polypeptide with a molecular weight of 34,000 that hexamerizes in lipid bilayers to form pores of 1-1.5 nm effective diameter in membranes. We demonstrate that limited proteolysis of purified alpha-toxin with proteinase K generates a hemolytically active product that yields one major protein band of 17-18 kDa in SDS-polyacrylamide gel electrophoresis. The 17-18-kDa protein band harbors two major fragments of similar size representing the N- and C-terminal halves, which remain associated with each other in non-denaturing buffers but dissociate in 6 M urea. Dissociation in urea leads to loss of hemolytic activity. In contrast, unnicked alpha-toxin …

Staphylococcus aureusLysisProteolysisBacterial ToxinsHemolysin ProteinsHemolysisBiochemistryMonocytesCell membraneHemolysin ProteinsmedicineHumansLymphocytesLipid bilayerMolecular BiologyGel electrophoresismedicine.diagnostic_testbiologyCell MembraneErythrocyte MembraneSerine EndopeptidasesCell BiologyProteinase KPeptide FragmentsKineticsMembranemedicine.anatomical_structureBiochemistryChromatography Gelbiology.proteinElectrophoresis Polyacrylamide GelEndopeptidase KJournal of Biological Chemistry
researchProduct

Characterization of a mutant form of human apolipoprotein B (Thr26_Tyr27del) associated with familial hypobetalipoproteinemia

2016

We have previously identified a deletion mutant of human apoB [apoB (Thr26_Tyr27del)] in a subject with primary hypobetalipoproteinemia. The present study determined the effect of Thr26_Tyr27del mutation on apoB secretion using transfected McA-RH7777 cells. Transient or stable transfection of apoB-48 containing the Thr26_Tyr27del mutation showed drastically reduced secretion of the mutant as compared to wild-type apoB-48. No lipoproteins containing the mutant apoB-48 were secreted into the medium. Incubation of transfected cells in a lipid-rich medium in the presence of cycloheximide showed rapid turnover of cell-associated mutant apoB-48 as compared to that of wild-type apoB-48. Immunofluo…

0301 basic medicineSettore MED/09 - Medicina InternaTime FactorsApolipoprotein B-48 secretionApolipoprotein BMutantDNA Mutational AnalysisApolipoprotein B mutation Apolipoprotein B-48 secretion Hypobetalipoproteinemia Proteasomal degradation030204 cardiovascular system & hematologymedicine.disease_causeEndoplasmic ReticulumHypobetalipoproteinemiaschemistry.chemical_compound0302 clinical medicineProteasomal degradationProteolysiSequence DeletionMutationbiologyMedicine (all)TransfectionProteasome InhibitorPhenotypeBiochemistryApolipoprotein B-100lipids (amino acids peptides and proteins)Proteasome InhibitorsHumanHeterozygoteProteasome Endopeptidase ComplexTime FactorCycloheximideTransfectiondigestive systemCell LineDNA Mutational Analysi03 medical and health sciencesmedicineHumansSecretionGenetic Predisposition to DiseaseMolecular BiologyEndoplasmic reticulumnutritional and metabolic diseasesCell Biologymedicine.diseaseMolecular biology030104 developmental biologychemistryProteolysisbiology.proteinHypobetalipoproteinemiaApolipoprotein B mutationApolipoprotein B-48Hypobetalipoproteinemia
researchProduct

Functional significance of membrane associated proteolysis in the toxicity of Bacillus thuringiensis Cry3Aa toxin against Colorado potato beetle.

2012

Abstract Bacillus thuringiensis Cry toxins are widely used as biocontrol agents in bioinsecticides and transgenic plants. In the three domain-Cry toxins, domain II has been identified as an important determinant of their highly specific activity against insects. In this work, we assessed the role in membrane associated proteolysis and toxicity in Colorado potato beetle (CPB) of a previously reported ADAM recognition motif present in Cry3Aa toxin domain II. We used site-directed mutagenesis to modify the Bacillus thuringiensis cry3A gene in amino acid residues 344, 346, 347, 351 and 353 of the ADAM recognition motif in Cry3Aa toxin. Cry3Aa toxin mutants displayed decreased toxicity when comp…

ProteasesColoradoProteolysisMutantBacillus thuringiensisToxicologymedicine.disease_causeMicrobiologyHemolysin ProteinsRecognition sequenceBacterial ProteinsBacillus thuringiensismedicineAnimalsAmino Acid SequencePest Control BiologicalCells Culturedbiologymedicine.diagnostic_testBacillus thuringiensis ToxinsMicrovilliToxinfungiColorado potato beetleWild typeSequence Analysis DNAbiology.organism_classificationColeopteraEndotoxinsBiochemistryProteolysisMutagenesis Site-DirectedToxicon : official journal of the International Society on Toxinology
researchProduct

Tetanus Toxin Inhibits Neuroexocytosis Even When Its Zn2+-dependent Protease Activity Is Removed

1995

Tetanus toxin (TeTX) is a dichain protein that blocks neuroexocytosis, an action attributed previously to Zn(2+)-dependent proteolysis of synaptobrevin (Sbr) by its light chain (LC). Herein, its cleavage of Sbr in rat cerebrocortical synaptosomes was shown to be minimized by captopril, an inhibitor of certain metalloendoproteases, whereas this agent only marginally antagonized the inhibition of noradrenaline release, implicating a second action of the toxin. This hypothesis was proven by preparing three mutants (H233A, E234A, H237A) of the LC lacking the ability to cleave Sbr and reconstituting them with native heavy chain. The resultant dichains were found to block synaptosomal transmitter…

CaptoprilSynaptobrevinProteolysismedicine.medical_treatmentGuinea PigsInhibitory postsynaptic potentialmedicine.disease_causeBiochemistryExocytosisNorepinephrinechemistry.chemical_compoundTetanus ToxinCadaverineAplysiaEndopeptidasesmedicineAnimalsEnzyme InhibitorsNeurotransmitterMolecular BiologyCerebral CortexTransglutaminasesProteasemedicine.diagnostic_testbiologyToxinHydrolysisWild typeCell Biologybiology.organism_classificationRecombinant ProteinsRatsZincBiochemistrychemistryAplysiaBiophysicsSynaptosomesJournal of Biological Chemistry
researchProduct

Salivary protein profiles and sensitivity to the bitter taste of caffeine.

2011

WOS: 000298381900008; International audience; The interindividual variation in the sensitivity to bitterness is attributed in part to genetic polymorphism at the taste receptor level, but other factors, such as saliva composition, might be involved. In order to investigate this, 2 groups of subjects (hyposensitive, hypersensitive) were selected from 29 healthy male volunteers based on their detection thresholds for caffeine, and their salivary proteome composition was compared. Abundance of 26 of the 255 spots detected on saliva electrophoretic patterns was significantly different between hypo- and hypersensitive subjects. Saliva of hypersensitive subjects contained higher levels of amylase…

Immunoglobulin AMaleSalivaPhysiologymedicine.medical_treatment[ SDV.AEN ] Life Sciences [q-bio]/Food and Nutritionperceptionbitternessin-vivoBehavioral Neurosciencechemistry.chemical_compound0302 clinical medicineTaste receptorphenolic astringent stimuliAmylase0303 health scienceswhole salivabiologyperiodontitis patientsMiddle AgedSensory Systemsmucosal pellicleTasteTaste ThresholdCystatinCaffeineimmunoglobulin-acystatinsAdultmedicine.medical_specialtyproteolysisproteomeSerum albumin03 medical and health sciencesstomatognathic systemPhysiology (medical)Internal medicineCaffeinemedicineHumansSalivary Proteins and Peptidescystatin030304 developmental biologysalivaProteasealpha-amylase030206 dentistryEndocrinologychemistrytwo-dimensionalelectrophoresisbiology.protein[SDV.AEN]Life Sciences [q-bio]/Food and Nutritionhealthy-subjects
researchProduct

Protease-mediated processing of Argonaute proteins controls small RNA association

2020

SummarySmall RNA pathways defend the germlines of animals against selfish genetic elements and help to maintain genomic integrity. At the same time, their activity needs to be well-controlled to prevent silencing of ‘self’ genes. Here, we reveal a proteolytic mechanism that controls endogenous small interfering (22G) RNA activity in the Caenorhabditis elegans germline to protect genome integrity and maintain fertility. We find that WAGO-1 and WAGO-3 Argonaute (Ago) proteins are matured through proteolytic processing of their unusually proline-rich N-termini. In the absence of DPF-3, a P-granule-localized N-terminal dipeptidase orthologous to mammalian DPP8/9, processing fails, causing a cha…

Transposable elementSmall RNAanimal structuresDNA damageBiologyDipeptidyl peptidaseSubstrate Specificity03 medical and health sciences0302 clinical medicineAnimalsGene silencingRNA MessengerRNA Small InterferingCaenorhabditis elegansCaenorhabditis elegans ProteinsDipeptidyl-Peptidases and Tripeptidyl-PeptidasesMolecular BiologyGeneCaenorhabditis elegans030304 developmental biology0303 health sciencesWild typeRNACell BiologyArgonautebiology.organism_classificationCell biologyFertilityArgonaute ProteinsProteolysisRNA HelminthProtein Processing Post-Translational030217 neurology & neurosurgery
researchProduct

IDENTIFICATION OF A CALMODULIN-BINDING SITE WITHIN THE DOMAIN I OF BACILLUS THURINGIENSISCry3Aa TOXIN

2012

Bacillus thuringiensis Cry3Aa toxin is a coleopteran specific toxin highly active against Colorado Potato Beetle (CPB).We have recently shown that Cry3Aa toxin is proteolytically cleaved by CPB midgut membrane associated metalloproteases and that this cleavage is inhibited by ADAM metalloprotease inhibitors. In the present study, we investigated whether the Cry3Aa toxin is a calmodulin (CaM) binding protein, as it is the case of several different ADAM shedding substrates. In pull-down assays using agarose beads conjugated with CaM, we demonstrated that Cry3Aa toxin specifically binds to CaM in a calcium-independent manner. Furthermore, we used gel shift assays and (1)H NMR spectra to demons…

chemistry.chemical_classificationCalmodulinmedicine.diagnostic_testPhysiologyToxinBinding proteinProteolysisPeptideGeneral MedicineTrifluoperazineBiologymedicine.disease_causebiology.organism_classificationBiochemistryMolecular biologychemistryBiochemistryInsect ScienceBacillus thuringiensismedicinebiology.proteinBinding sitemedicine.drugArchives of Insect Biochemistry and Physiology
researchProduct

The Abundant Tegument Protein pUL25 of Human Cytomegalovirus Prevents Proteasomal Degradation of pUL26 and Supports Its Suppression of ISGylation

2018

The tegument of human cytomegalovirus (HCMV) virions contains proteins that interfere with both the intrinsic and the innate immunity. One protein with a thus far unknown function is pUL25. The deletion of pUL25 in a viral mutant (Towne-ΔUL25) had no impact on the release of virions and subviral dense bodies or on virion morphogenesis. Proteomic analyses showed few alterations in the overall protein composition of extracellular particles. A surprising result, however, was the almost complete absence of pUL26 in virions and dense bodies of Towne-ΔUL25 and a reduction of the large isoform pUL26-p27 in mutant virus-infected cells. pUL26 had been shown to inhibit protein conjugation with the in…

Proteomics0301 basic medicineIntrinsic immunityHuman cytomegalovirusImmunoprecipitationvirusesImmunologyMutantCytomegalovirusBiologyVirus ReplicationMicrobiologyViral Matrix ProteinsViral Proteins03 medical and health sciencesInterferonVirologymedicineHumansUbiquitinsCells CulturedInnate immune systemvirus diseasesViral tegumentFibroblastsbiochemical phenomena metabolism and nutritionPhosphoproteinsmedicine.diseaseISG15Immunity InnateVirus-Cell InteractionsCell biology030104 developmental biologyInsect ScienceMutationProteolysisCytokinesmedicine.drugJournal of Virology
researchProduct

The N-terminal domain of the light-harvesting chlorophyll a/b-binding protein complex (LHCII) is essential for its acclimative proteolysis.

2000

AbstractVariations in the amount of the light-harvesting chlorophyll a/b-binding protein complex (LHCII) is essential for regulation of the uptake of light into photosystem II. An endogenous proteolytic system was found to be involved in the degradation of LHCII in response to elevated light intensities and the proteolysis was shown to be under tight regulation [Yang, D.-H. et al. (1998) Plant Physiol. 118, 827–834]. In this study, the substrate specificity and recognition site towards the protease were examined using reconstituted wild-type and mutant recombinant LHCII. The results show that the LHCII apoprotein and the monomeric form of the holoprotein are targeted for proteolysis while t…

Acclimative proteaseChlorophyll aN-terminal domainPhotosystem IImedicine.medical_treatmentProteolysisMutantMolecular Sequence DataPhotosynthetic Reaction Center Complex ProteinsBiophysicsLight-Harvesting Protein ComplexesRecognition siteEndogenyLight-harvesting complex IIBiochemistrylaw.inventionchemistry.chemical_compoundStructural BiologylawSpinacia oleraceaGeneticsmedicineAmino Acid SequenceMolecular BiologyProteasemedicine.diagnostic_testSequence Homology Amino AcidChemistryBinding proteinHydrolysisPhotosystem II Protein ComplexCell BiologyBiochemistryRecombinant light-harvesting complex IIProteolysisRecombinant DNAFEBS letters
researchProduct

Ectodomain shedding of CD99 within highly conserved regions is mediated by the metalloprotease meprin β and promotes transendothelial cell migration.

2016

The adhesion molecule CD99 is essential for the transendothelial migration of leukocytes. In this study, we used biochemical and cellular assays to show that CD99 undergoes ectodomain shedding by the metalloprotease meprin β and subsequent intramembrane proteolysis by γ-secretase. The cleavage site in CD99 was identified by mass spectrometry within an acidic region highly conserved through different vertebrate species. This finding fits perfectly to the unique cleavage specificity of meprin β with a strong preference for aspartate residues and suggests coevolution of protease and substrate. We hypothesized that limited CD99 cleavage by meprin β would alter cellular transendothelial migratio…

0301 basic medicinemedicine.medical_treatmentProteolysis12E7 AntigenCleavage (embryo)Biochemistry03 medical and health sciencesCarcinoma Lewis LungMice0302 clinical medicineGeneticsmedicineAnimalsHumansMolecular BiologyConserved SequenceMetalloproteinaseProteasemedicine.diagnostic_testChemistryTransendothelial and Transepithelial MigrationLewis lung carcinomaMetalloendopeptidasesCell migrationMolecular biologyIn vitroMice Inbred C57BL030104 developmental biologyHEK293 CellsEctodomain030220 oncology & carcinogenesisProteolysisBiotechnologyHeLa CellsFASEB journal : official publication of the Federation of American Societies for Experimental Biology
researchProduct