Search results for "proton"
showing 10 items of 5886 documents
"Table 20" of "Search for massive, long-lived particles using multitrack displaced vertices or displaced lepton pairs in pp collisions at $\sqrt{s}$ …
2015
Upper limits (95% CL) from the DV+$E_T^{miss}$ channel on the production cross-section and the corresponding event-level efficiencies (from Auxiliary Figure 9a) for two GGM SUSY models as a function of the $\tilde{\chi}_1^0$ proper decay distance $c\tau$. The models consider gluino pair production, with $\tilde{g}\to qq[\tilde{\chi}_1^0\to Z\tilde{G}]$ decays, $m(\tilde{g})$ = 1100 GeV and a $\tilde{\chi}_1^0$ mass in GeV as indicated. For comparison, the production cross-section for $m(\tilde{g})$ = 1100 GeV is $7.6\pm2.8$ fb.
"Table 16" of "Search for massive, long-lived particles using multitrack displaced vertices or displaced lepton pairs in pp collisions at $\sqrt{s}$ …
2015
Upper limits (95% CL) from the dilepton $e^+e^-+e^{\pm}\mu^{\mp}+\mu^+\mu^-$ channels on the production cross-section and the corresponding event-level efficiencies (from Auxiliary Figure 6c) for two GGM SUSY models as a function of the $\tilde{\chi}_1^0$ proper decay distance $c\tau$. The models consider gluino pair production, with $\tilde{g}\to qq[\tilde{\chi}_1^0\to Z\tilde{G}]$ decays, $m(\tilde{g})$ = 1100 GeV and $m(\tilde{\chi}_1^0)$ = 400 GeV. For comparison, the production cross-section for $m(\tilde{g})$ = 1100 GeV is $7.6\pm2.8$ fb.
"Table 17" of "Search for massive, long-lived particles using multitrack displaced vertices or displaced lepton pairs in pp collisions at $\sqrt{s}$ …
2015
Upper limits (95% CL) from the dilepton $e^+e^-+e^{\pm}\mu^{\mp}+\mu^+\mu^-$ channels on the production cross-section and the corresponding event-level efficiencies (from Auxiliary Figure 6c) for two GGM SUSY models as a function of the $\tilde{\chi}_1^0$ proper decay distance $c\tau$. The models consider gluino pair production, with $\tilde{g}\to qq[\tilde{\chi}_1^0\to Z\tilde{G}]$ decays, $m(\tilde{g})$ = 1100 GeV and $m(\tilde{\chi}_1^0)$ = 1000 GeV. For comparison, the production cross-section for $m(\tilde{g})$ = 1100 GeV is $7.6\pm2.8$ fb.
"Table 24" of "Search for massive, long-lived particles using multitrack displaced vertices or displaced lepton pairs in pp collisions at $\sqrt{s}$ …
2015
Upper limits (95% CL) from the DV+$E_T^{miss}$ channel on the production cross-section and the corresponding event-level efficiencies (from Auxiliary Figure 10c) for three split-SUSY models as a function of the $\tilde{g}$ proper decay distance $c\tau$. The models consider gluino pair production, with $[\tilde{g}\to tt \tilde{\chi}_1^0]$ decays, $\tilde{g}$ masses in GeV as indicated and $m(\tilde{\chi}_1^0)$ = 100 GeV. For comparison, the production cross-sections for $m(\tilde{g})$ = 600 GeV, 1000 GeV and 1400 GeV are $1270\pm230$ fb, $22\pm6$ fb and $0.71\pm0.32$ fb, respectively.
"Table 26" of "Search for massive, long-lived particles using multitrack displaced vertices or displaced lepton pairs in pp collisions at $\sqrt{s}$ …
2015
Upper limits (95% CL) from the DV+$E_T^{miss}$ channel on the production cross-section and the corresponding event-level efficiencies (from Auxiliary Figure 10e) for four split-SUSY models as a function of the $\tilde{g}$ proper decay distance $c\tau$. The models consider gluino pair production, with $[\tilde{g}\to tt \tilde{\chi}_1^0]$ decays, $\tilde{g}$ masses in GeV as indicated and $m(\tilde{\chi}_1^0)$ = $m(\tilde{g}) - 480$ GeV. For comparison, the production cross-sections for $m(\tilde{g})$ = 500 GeV, 800 GeV and 1400 GeV are $4450\pm700$ fb, $149\pm31$ fb and $0.71\pm0.32$ fb, respectively.
"Table 22" of "Search for massive, long-lived particles using multitrack displaced vertices or displaced lepton pairs in pp collisions at $\sqrt{s}$ …
2015
Upper limits (95% CL) from the DV+$E_T^{miss}$ channel on the production cross-section and the corresponding event-level efficiencies (from Auxiliary Figure 10a) for four split-SUSY models as a function of the $\tilde{g}$ proper decay distance $c\tau$. The models consider gluino pair production, with $[\tilde{g}\to g/qq \tilde{\chi}_1^0]$ decays, $\tilde{g}$ masses in GeV as indicated and $m(\tilde{\chi}_1^0)$ = 100 GeV. For comparison, the production cross-sections for $m(\tilde{g})$ = 400 GeV, 800 GeV and 1400 GeV are $18700\pm2800$ fb, $149\pm31$ fb and $0.71\pm0.32$ fb, respectively.
"Table 25" of "Search for massive, long-lived particles using multitrack displaced vertices or displaced lepton pairs in pp collisions at $\sqrt{s}$ …
2015
Upper limits (95% CL) from the DV+jets channel on the production cross-section and the corresponding event-level efficiencies (from Auxiliary Figure 10d) for three split-SUSY models as a function of the $\tilde{g}$ proper decay distance $c\tau$. The models consider gluino pair production, with $[\tilde{g}\to tt \tilde{\chi}_1^0]$ decays, $\tilde{g}$ masses in GeV as indicated and $m(\tilde{\chi}_1^0)$ = 100 GeV. For comparison, the production cross-sections for $m(\tilde{g})$ = 600 GeV, 1000 GeV and 1400 GeV are $1270\pm230$ fb, $22\pm6$ fb and $0.71\pm0.32$ fb, respectively. A dash indicates where the limit-setting procedure did not converge.
"Table 27" of "Search for massive, long-lived particles using multitrack displaced vertices or displaced lepton pairs in pp collisions at $\sqrt{s}$ …
2015
Upper limits (95% CL) from the DV+jets channel on the production cross-section and the corresponding event-level efficiencies (from Auxiliary Figure 10f) for four split-SUSY models as a function of the $\tilde{g}$ proper decay distance $c\tau$. The models consider gluino pair production, with $[\tilde{g}\to tt \tilde{\chi}_1^0]$ decays, $\tilde{g}$ masses in GeV as indicated and $m(\tilde{\chi}_1^0)$ = $m(\tilde{g}) - 480$ GeV. For comparison, the production cross-sections for $m(\tilde{g})$ = 500 GeV, 800 GeV and 1400 GeV are $4450\pm700$ fb, $149\pm31$ fb and $0.71\pm0.32$ fb, respectively. A dash indicates where the limit-setting procedure did not converge.
"Table 14" of "Search for massive, long-lived particles using multitrack displaced vertices or displaced lepton pairs in pp collisions at $\sqrt{s}$ …
2015
Upper limits (95% CL) from the dilepton $e^+e^-+e^{\pm}\mu^{\mp}$ channels on the production cross-section and the corresponding event-level efficiencies (from Auxiliary Figure 6a) for four RPV SUSY models as a function of the $\tilde{\chi}_1^0$ proper decay distance $c\tau$. The models consider gluino pair production, with $\tilde{g}\to qq[\tilde{\chi}_1^0\to e\mu\nu/ee\nu]$ decays and masses in GeV as indicated. For comparison, the production cross-sections for $m(\tilde{g})$ = 600 GeV and 1300 GeV are $1280\pm230$ fb and $1.7\pm0.7$ fb, respectively.
"Table 23" of "Search for massive, long-lived particles using multitrack displaced vertices or displaced lepton pairs in pp collisions at $\sqrt{s}$ …
2015
Upper limits (95% CL) from the DV+jets channel on the production cross-section and the corresponding event-level efficiencies (from Auxiliary Figure 10b) for four split-SUSY models as a function of the $\tilde{g}$ proper decay distance $c\tau$. The models consider gluino pair production, with $[\tilde{g}\to g/qq \tilde{\chi}_1^0]$ decays, $\tilde{g}$ masses in GeV as indicated and $m(\tilde{\chi}_1^0)$ = 100 GeV. For comparison, the production cross-sections for $m(\tilde{g})$ = 400 GeV, 800 GeV and 1400 GeV are $18700\pm2800$ fb, $149\pm31$ fb and $0.71\pm0.32$ fb, respectively. A dash indicates where the limit-setting procedure did not converge or the limit is greater than $10^8$ fb.