Search results for "pseudogap"
showing 10 items of 22 documents
Direct observation of Drude behavior in the heavy-fermion by broadband microwave spectroscopy
2005
Abstract Previous optical studies on the heavy-fermion system UPd 2 Al 3 down to frequencies of about 1 cm - 1 ( = 30 GHz ) revealed a well-pronounced pseudogap at low frequencies (below 3 cm - 1 ) that was attributed to magnetic correlations. Thus, the optical conductivity at even lower frequencies is of notable interest because the Drude roll-off (the high-frequency characteristic of a metal which will give information on the quasiparticle dynamics) remained hidden at extremely low frequencies. Using a novel cryogenic broadband microwave spectrometer employing the Corbino geometry we have studied the complex optical conductivity of UPd 2 Al 3 thin films in the frequency range from 45 MHz …
Signatures of superfluidity for Feshbach-resonant Fermi gases
2004
We consider atomic Fermi gases where Feshbach resonances can be used to continuously tune the system from weak to strong interaction regime, allowing to scan the whole BCS-BEC crossover. We show how a probing field transferring atoms out of the superfluid can be used to detect the onset of the superfluid transition in the high-$T_c$ and BCS regimes. The number of transferred atoms, as a function of the energy given by the probing field, peaks at the gap energy. The shape of the peak is asymmetric due to the single particle excitation gap. Since the excitation gap includes also a pseudogap contribution, the asymmetry alone is not a signature of superfluidity. Incoherent nature of the non-con…
Influence ofsp−dhybridization on the electronic structure of Al-Mn alloys
2008
The influence of $sp\text{\ensuremath{-}}d$ hybridization on the electronic structure of different Al-Mn alloys has been studied by photoelectron spectroscopy. Experimental evidence of a pseudogap in a crystalline binary Hume-Rothery alloy is provided. The pseudogap varies systematically with Mn concentration. The $sp\text{\ensuremath{-}}d$ hybridization alone, even in the absence of Hume-Rothery mechanism, can produce the pseudogap. Existence of the pseudogap, suppression of the $\mathrm{Mn}\phantom{\rule{0.2em}{0ex}}2p$ satellite, and decrease in the Doniach-\ifmmode \check{S}\else \v{S}\fi{}unji\ifmmode \acute{c}\else \'{c}\fi{} asymmetry parameter are the consequences of the $sp\text{\e…
Coulomb interaction in disordered metals and HTSC
2001
Abstract We consider underdoped or overdoped cuprates as disordered conductors. The diffusion coefficient D can be as low as 10 −5 m 2 s −1 . Under these conditions Coulomb interaction between electrons must be taken into account. The main effect is to open a dip in the density of state near the Fermi level. We show that this model explains most of the observed features of the so-called “pseudogap” in the normal state including its value, anisotropy and variation with doping. Such a model applied to disordered metals explains the dips observed in conductance measurements.
Momentum structure of the self-energy and its parametrization for the two-dimensional Hubbard model
2016
We compute the self-energy for the half-filled Hubbard model on a square lattice using lattice quantum Monte Carlo simulations and the dynamical vertex approximation. The self-energy is strongly momentum dependent, but it can be parametrized via the non-interacting energy-momentum dispersion $\varepsilon_{\mathbf{k}}$, except for pseudogap features right at the Fermi edge. That is, it can be written as $\Sigma(\varepsilon_{\mathbf{k}},\omega)$, with two energy-like parameters ($\varepsilon$, $\omega$) instead of three ($k_x$, $k_y$ and $\omega$). The self-energy has two rather broad and weakly dispersing high energy features and a sharp $\omega= \varepsilon_{\mathbf{k}}$ feature at high tem…
Frequency-dependent conductivity of UPd2Al3 films
1998
The transmission of UPd2Al3 films was studied (4 K < T < 300 K) in the frequency range from 4 to 32 cm−1 by using a coherent source interferometer which allows for measuring both, amplitude and phase. In addition we report on radio frequency and optical measurements. Below 20 K the conductivity and dielectric constant show strong deviations from the behavior of a normal metal which cannot simply be explained by a single renormalized Drude model with an enhanced mass and reduced scattering rate. Instead, we find evidence for the opening of a pseudogap with a gap energy of 6 cm−1 and an extremely narrow ω = 0 mode which is responsible for the large DC conductivity.
Electronic structure studies ofBaFe2As2by angle-resolved photoemission spectroscopy
2009
We report high resolution angle-resolved photoemission spectroscopy (ARPES) studies of the electronic structure of ${\text{BaFe}}_{2}{\text{As}}_{2}$, which is one of the parent compounds of the Fe-pnictide superconductors. ARPES measurements have been performed at 20 and 300 K, corresponding to the orthorhombic antiferromagnetic phase and the tetragonal paramagnetic phase, respectively. Photon energies between 30 and 175 eV and polarizations parallel and perpendicular to the scattering plane have been used. Measurements of the Fermi surface yield two hole pockets at the $\ensuremath{\Gamma}$ point and an electron pocket at each of the $X$ points. The topology of the pockets has been conclu…
The Pion Velocity in Dense Skyrmion Matter
2003
We have developed a field theory formalism to calculate $in$-$medium$ properties of hadrons within a unified approach that exploits a single Lagrangian to describe simultaneously both matter background and meson fluctuations. In this paper we discuss the consequences on physical observables of a possible phase transition of hadronic matter taking place in the chiral limit. We pay special attention to the pion velocity $v_\pi$, which controls, through a dispersion relation, the pion propagation in the hadronic medium. The $v_\pi$ is defined in terms of parameters related to the matrix element in matter of the axial-vector current, namely, the in-medium pion decay constants, $f_t$ and $f_s$. …
Composite Operator Method analysis of the underdoped cuprates puzzle
2014
The microscopical analysis of the unconventional and puzzling physics of the underdoped cuprates, as carried out lately by means of the Composite Operator Method (COM) applied to the 2D Hubbard model, is reviewed and systematized. The 2D Hubbard model has been adopted as it has been considered the minimal model capable to describe the most peculiar features of cuprates held responsible for their anomalous behavior. COM is designed to endorse, since its foundations, the systematic emergence in any SCS of new elementary excitations described by composite operators obeying non-canonical algebras. In this case (underdoped cuprates - 2D Hubbard model), the residual interactions - beyond a 2-pole…
Correlation gap in the heavy-fermion antiferromagnetUPd2Al3
2002
The optical properties of the heavy-fermion compound ${\mathrm{UPd}}_{2}{\mathrm{Al}}_{3}$ have been measured in a frequency range from 0.04 to 5 meV $(0.3--40{\mathrm{cm}}^{\ensuremath{-}1})$ at temperatures $2\mathrm{K}lTl300\mathrm{K}.$ Below the coherence temperature ${T}^{*}\ensuremath{\approx}50\mathrm{K},$ a hybridization gap opens around 10 meV. As the temperature decreases further $(Tl~20\mathrm{K}),$ a well-pronounced pseudogap of approximately 0.2 meV develops in the optical response; we relate this to the antiferromagnetic ordering which occurs below ${T}_{N}\ensuremath{\approx}14\mathrm{K}.$ The frequency-dependent mass and scattering rate give evidence that the enhancement of …