Search results for "pseudovirions"

showing 2 items of 2 documents

DNA binding of L1 is required for human papillomavirus morphogenesis in vivo.

2002

AbstractThe role of putative DNA-binding domains of human papillomavirus (HPV) capsid proteins for DNA encapsidation in vivo is still unknown. We have now analyzed mutants of the major capsid protein L1 of HPV type 33, which are defective for DNA binding, for their ability to encapsidate DNA using an in vivo packaging approach. Since the DNA-binding domain and the nuclear localization signal (NLS) of L1 overlap, both a carboxy-terminal deletion mutant (L1-1/470) and a substitution mutant (L1-1/477M9) were analyzed. L1-1/477M9 has the classical NLS replaced by a noncanonical NLS taken from the human hnRNP protein A1. The mutant proteins were defective for DNA binding in contrast to wild-type…

CytoplasmHMG-boxMutantBiologyKidneypapillomavirusCell Linechemistry.chemical_compoundCapsidVirologyHumansPoint MutationDNA bindingPapillomaviridaeInfectivityCell NucleusVirus AssemblypseudovirionsL1DNA encapsidationMolecular biologyChromatinDNA-Binding ProteinschemistryCapsidCytoplasmDNA ViralchromatinDNANuclear localization sequenceVirology
researchProduct

Analysis of the infectious entry pathway of human papillomavirus type 33 pseudovirions.

2002

AbstractHuman papillomavirus type 33 (HPV-33) pseudovirus infection is a slow process dependent on the initial interaction with cell-surface heparan sulfate (T. Giroglou, L. Florin, F. Schafer, R. E. Streeck, and M. Sapp, 2001a, J. Virol. 75, 1565–1570). We have now further dissected the initial steps of pseudovirus uptake using removal of cell-surface proteoglycans and selective inhibition of entry pathways. Treatment of cells with heparinase I, but not with phosphoinositol-specific phospholipase C (PIPLC), prevented binding of papillomavirus-like particles and infection with HPV-33 pseudovirions, indicating that GPI-linked proteoglycans (glypicans) are not required for productive infectio…

NystatinEndosomemedia_common.quotation_subjectvirus entryBiologypapillomavirusMicrotubulesendosomal acidificationchemistry.chemical_compoundViral entryVirologyAnimalsHumansInternalizationPapillomaviridaemedia_commonCytochalasin DCOS cellsPhospholipase CVirionpseudovirionsHeparan sulfateVirologyActinsCell biologyAnti-Bacterial AgentsNocodazolechemistryCOS CellsproteoglycansMacrolidesHeparan Sulfate ProteoglycansHeLa CellsVirology
researchProduct