Search results for "pulse"

showing 10 items of 1508 documents

All-fibered high-quality 28-GHz to 112 GHz pulse sources based on nonlinear compression of optical temporal besselons

2021

The generation of high quality pulse trains at repetition rates of several tens of GHz remains a crucial step for optical telecommunications, optical sampling or component testing applications. Unfortunately, the current bandwidth limitations of optoelectronic devices do not allow the direct generation of well-defined optical pulse trains with low duty cycles. An attractive solution is based on a direct temporal phase modulation that is then converted into an intensity modulation thanks to a dispersive element that imprints a spectral quadratic phase. Picosecond pulses at repetition rates of several tens of GHz have been successfully demonstrated [1] . However, this approach suffers from a …

[PHYS.PHYS.PHYS-OPTICS] Physics [physics]/Physics [physics]/Optics [physics.optics][PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics]Materials scienceExtinction ratiobusiness.industryBandwidth (signal processing)Nonlinear opticsPulse (physics)Quality (physics)OpticsPicosecondbusinessIntensity modulationPhase modulationComputingMilieux_MISCELLANEOUS
researchProduct

Optical Cavity-Less 40-GHz Picosecond Pulse Generator in the Visible Wavelength Range

2019

International audience; High-repetition-rate optical frequency-comb sources emitting picosecond pulses play important roles in variousscientific researches and industrial applications. Such ultrafast pulse sources are mostly generated in opticalcavities or microresonators. By means of the wavelength-conversion techniques, it is possible to transfer thecavity-based near-IR robust and compact sources to the mid-IR or to the visible wavelength regions [1-2], forwhich there is an increasing demand, for biophotonics and other applications. Here we demonstrate the generationof high-repetition-rate picosecond pulses in the visible wavelength range by using a fully optical cavity-lessconfiguration.…

[PHYS.PHYS.PHYS-OPTICS] Physics [physics]/Physics [physics]/Optics [physics.optics][PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics]Materials scienceMulti-mode optical fiberbusiness.industryOptical communicationSecond-harmonic generation7. Clean energylaw.inventionWavelengthOpticslawOptical cavityPicosecondPulse wavebusinessUltrashort pulse2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC)
researchProduct

Optical waveform tailoring in passive and laser cavity fibre systems

2019

International audience; The interplay among the effects of dispersion, nonlinearity and gain/loss in optical fibres is a powerful tool to generate a broad range of pulse shapes with tuneable properties. Here we propose a method to optimise the systems parameters for a given pulse target. By reducing the system complexity and applying machine-learning strategies, we show that it is possible to efficiently identify the sets of parameters of interest. Two configurations are numerically investigated: pulse shaping in a passive normally dispersive fibre and pulse generation in a dual-pump nonlinear-amplifying-loop-mirror mode-locked fibre laser.

[PHYS.PHYS.PHYS-OPTICS] Physics [physics]/Physics [physics]/Optics [physics.optics][PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics]Materials scienceOptical fiberbusiness.industry02 engineering and technology01 natural sciencesPulse shapinglaw.inventionPulse (physics)010309 opticsNonlinear system020210 optoelectronics & photonicsOpticslawOptical cavityFiber laser0103 physical sciencesDispersion (optics)0202 electrical engineering electronic engineering information engineeringWaveformbusiness
researchProduct

High-quality 10 and 20 GHz repetition rate optical sources based on the spectral phase tailoring of a temporal sinusoidal phase modulation

2019

International audience; We theoretically introduce and experimentally demonstrate a new approach to generate high-quality, high repetition-rate pulse trains. This method is based on a temporal sinusoidal phase modulation combined with a triangular spectral phase shaping. Experimental results validate the concept at repetition rates of 10 and 20 GHz.

[PHYS.PHYS.PHYS-OPTICS] Physics [physics]/Physics [physics]/Optics [physics.optics][PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics]Materials scienceRepetition (rhetorical device)Extinction ratiobusiness.industryoptical processingPhase (waves)Nonlinear optics02 engineering and technology01 natural sciencesPulse (physics)010309 optics020210 optoelectronics & photonicsQuality (physics)Optics0103 physical sciences0202 electrical engineering electronic engineering information engineeringbusinessPhase modulationFrequency modulationHigh repetition-rate optical sourcesphase modulation
researchProduct

All-optical fiber-based devices for ultrafast amplitude jitter magnification

2012

International audience; We propose two fiber-based architectures that enable the all-optical magnification of ultrafast amplitude fluctuations of picosecond or femtosecond pulse trains. An increase of the fluctuations by more than one order of magnitude is experimentally achieved.

[PHYS.PHYS.PHYS-OPTICS] Physics [physics]/Physics [physics]/Optics [physics.optics][PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics]Materials science[ PHYS.PHYS.PHYS-OPTICS ] Physics [physics]/Physics [physics]/Optics [physics.optics]business.industryMagnificationPhysics::Optics02 engineering and technology01 natural sciences010309 optics020210 optoelectronics & photonicsAmplitudeOpticsFiber Bragg gratingPicosecond0103 physical sciences0202 electrical engineering electronic engineering information engineeringPhysics::Atomic and Molecular ClustersPhysics::Chemical PhysicsbusinessUltrashort pulseOrder of magnitudeComputingMilieux_MISCELLANEOUSPhotonic-crystal fiberJitter
researchProduct

High Order Harmonic Passive Mode-Locking In Double-Clad Fiber Laser

2009

We report passive mode-locking of a soliton erbium-doped double-clad fiber laser operating at the 322nd harmonic of the fundamental cavity frequency. Repetition rates scalable up to 3 GHz have been obtained with a pulse duration of about 1 ps and a pulse energy of about 18 pJ. The supermode suppression at the 322nd harmonic is better than 25 dB. The dynamics of emergence of this operating regime is also presented revealing a very long timescale.

[PHYS.PHYS.PHYS-OPTICS] Physics [physics]/Physics [physics]/Optics [physics.optics][PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics]Materials science[ PHYS.PHYS.PHYS-OPTICS ] Physics [physics]/Physics [physics]/Optics [physics.optics]business.industryPhysics::OpticsPulse durationSoliton (optics)02 engineering and technologyLaser01 natural scienceslaw.invention010309 opticsHarmonic analysis020210 optoelectronics & photonicsOpticsDouble-clad fiberMode-lockinglawFiber laser0103 physical sciences0202 electrical engineering electronic engineering information engineeringHarmonicbusinessComputingMilieux_MISCELLANEOUS
researchProduct

Stabilisation of modelocking in fibre ring laser through pulse bunching

2001

Bunching of equally spaced pulses is reported to be the most stable mode of operation in a passively modelocked fibre ring laser. The ring includes dispersion management, which results in the absence of strict pulse energy quantisation, giving pulse bunching a better immunity to environmental perturbation.

[PHYS.PHYS.PHYS-OPTICS] Physics [physics]/Physics [physics]/Optics [physics.optics][PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics]Materials science[ PHYS.PHYS.PHYS-OPTICS ] Physics [physics]/Physics [physics]/Optics [physics.optics]business.industryRing laser01 natural sciences010309 opticsOptics0103 physical sciencesLaser mode lockingPhysics::Accelerator PhysicsElectrical and Electronic Engineering010306 general physicsPulse energybusinessBandwidth-limited pulseComputingMilieux_MISCELLANEOUS
researchProduct

Parabolic pulse generation and applications

2009

Parabolic pulses in optical fibers have stimulated an increasing number of applications. We review here the physics underlying the generation of such pulses as well as the results obtained in a wide-range of experimental configurations.

[PHYS.PHYS.PHYS-OPTICS] Physics [physics]/Physics [physics]/Optics [physics.optics][PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics]Optical fiberMaterials science[ PHYS.PHYS.PHYS-OPTICS ] Physics [physics]/Physics [physics]/Optics [physics.optics]business.industryFiber nonlinear opticsNonlinear optics02 engineering and technology01 natural sciencesPulse shapingOptical fibre amplifierslaw.inventionPulse (physics)010309 optics020210 optoelectronics & photonicsOpticsOptical fiber amplifierslaw0103 physical sciences0202 electrical engineering electronic engineering information engineeringOptoelectronicsbusinessComputingMilieux_MISCELLANEOUS
researchProduct

Parabolic pulse formation and applications

2009

Parabolic pulses in optical fibers have stimulated an increasing number of applications. We review here the physics underlying the generation of such pulses as well as the results obtained in a wide-range of experimental configurations.

[PHYS.PHYS.PHYS-OPTICS] Physics [physics]/Physics [physics]/Optics [physics.optics][PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics]Optical fiberMaterials science[ PHYS.PHYS.PHYS-OPTICS ] Physics [physics]/Physics [physics]/Optics [physics.optics]business.industryFiber nonlinear opticsUltrafast opticsNonlinear optics02 engineering and technology01 natural sciencesPulse shapinglaw.inventionPulse (physics)010309 optics020210 optoelectronics & photonicsOpticsFiber Bragg gratinglaw0103 physical sciencesDispersion (optics)0202 electrical engineering electronic engineering information engineeringOptoelectronicsbusinessComputingMilieux_MISCELLANEOUS
researchProduct

Experimental parabolic pulse generation with an active dispersion decreasing fiber

2008

We experimentally demonstrate the use of an hybrid configuration to generate parabolic pulses. We combine dispersion decrease with distributed gain. This leads to several benefits on the parabolic generated pulses compared with a passive configuration.

[PHYS.PHYS.PHYS-OPTICS] Physics [physics]/Physics [physics]/Optics [physics.optics][PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics][ PHYS.PHYS.PHYS-OPTICS ] Physics [physics]/Physics [physics]/Optics [physics.optics]Materials scienceRaman amplificationbusiness.industryMathematics::Analysis of PDEsNonlinear optics02 engineering and technology01 natural sciencesPulse shapingPulse (physics)010309 optics020210 optoelectronics & photonicsOptics0103 physical sciencesDispersion (optics)0202 electrical engineering electronic engineering information engineeringOptoelectronicsFiberbusinessComputingMilieux_MISCELLANEOUS2008 IEEE/LEOS Winter Topical Meeting Series
researchProduct