Search results for "purity"
showing 10 items of 356 documents
Luminescence of rutile structured crystalline silicon dioxide (stishovite)
2014
Abstract Luminescence spectrum of synthetic mono-crystalline stishovite comprises a slow blue band at ~400 nm (~3.1 eV) and a fast UV band at ~260 nm (~4.7 eV), as well as some bands in near-infrared range of spectra. The NIR luminescence of stishovite crystal, excited with lasers 532 nm, 248 nm and 193 nm as well as x-ray, possesses several sharp lines. A zero phonon line is situated at 787 nm (1.57 eV) and grows with cooling. An anti-Stokes line is located at 771 nm (1.68 eV). This line disappears with cooling. In a powder sample of stishovite created by shock waves generated by the impact of a 50-m-diameter meteorite in Arizona 50,000 years ago, the PL broad blue band is situated at 425 …
Peculiarities of photoluminescence of Al2O3 bulk and nanosize powders at low temperatures
2011
Abstract Photoluminescence has been studied in the aluminum oxide (Al2O3) bulk and nanosize powders in the 300–8 K temperature range. In both samples luminescence spectrum is characterized by presence of broad blue and red bands caused mainly by emission from the uncontrolled titanium impurity. At low temperatures luminescence intensity increases by several times and the red band obtains fine structure. The nature of the fine structure is discussed suggesting manifestation of splitting of the Ti3+ emitting level due to Jahn–Teller effect or overlapping of Ti3+ emission band with narrow lines from other emitting ions. The observed differences in low-temperature spectral features of nanopowde…
3d impurities in Al: density functional results
1980
Self-consistent spin density functional calculations have been carried out for 3d transition metal impurities in aluminium. The width of the virtual level decreases as it moves away from the Fermi energy with increasing occupancy. The results are compared with recent XPS measurements.
EPR characterization of erbium in glasses and glass ceramics
2020
Electron paramagnetic resonance (EPR) is a well-established spectroscopic technique for electronic structure characterization of rare-earth ion impurities in crystalline and amorphous hosts. EPR spectra of erbium-doped glass matrices and nanocomposites can provide information about local structure variations induced by changes in chemical composition or crystallization processes. Characterization possibilities of Er3+ ions in glasses and glass ceramics including direct EPR measurements, indirect investigations via secondary paramagnetic probes, and optically detected magnetic resonance techniques are considered in this article. ----/ / /---- This is the pre-print of the following article: A…
Photochemical stabilization of linear low-density polyethylene/clay nanocomposites: Towards durable nanocomposites
2008
International audience; This article reports a study of the chemical modifications of LLDPE/nanoblend nanocomposites exposed to UV light in conditions of artificially accelerated ageing and natural weathering. Analysis by infrared spectroscopy of the chemical modifications produced by photoageing shows that the presence of an organo-clay leads to the decrease of the oxidation induction time of the polymer (LLDPE), which results in lower durability of the nanocomposites. Protection against photooxidation was tested with different kinds of UV stabilizers and with a metal deactivator. It is shown that the metal deactivator is very efficient in stabilizing the nanocomposite since it totally can…
Defect Calculations for Yttrium Aluminum Perovskite and Garnet Crystals
2000
Native and impurity point defects in both Yttrium Aluminum Perovskite and Garnet crystals are studied in the framework of the pair-potential and the shell model approximations. The calculated formation energies for native defects suggest that the antisite disorder is preferred over the Frenkel and Schottky-like disorder in both YAP and YAG. In non-stoichiometric compounds, the calculated reaction energies indicate that excess of Y2O3 or Al2O3 is, most likely, to be accommodated by the formation of antisites rather than vacancies or interstitials in the lattice. Enthalpies of the reactions for impurity (Ca2+, Mg2+, Sr2+, Ba2+, Cr3+, Fe3+, Nd3+, Si4+) incorporation into both YAP and YAG latti…
Room-temperature plasma-enhanced atomic layer deposition of ZnO: Film growth dependence on the PEALD reactor configuration
2017
Room-temperature plasma-enhanced atomic layer deposition (PEALD) of ZnO was studied by depositing the films using diethylzinc and O2 plasma from inductively-coupled plasma (ICP) and capacitively-coupled plasma (CCP) plasma source configurations. The CCP-PEALD was operated using both remote and direct plasma. It was observed that the films deposited by means of remote ICP and CCP were all highly oxygen rich, independently on plasma operation parameters, but impurity (H, C) contents could be reduced by increasing plasma pulse time and applied power. With the direct CCP-PEALD the film composition was closer to stoichiometric, and film crystallinity was enhanced. The ZnO film growth was observe…
Improving the material quality of silicon ingots by aluminum gettering during crystal growth
2016
We present a method for the purification of silicon ingots during the crystallization process that reduces significantly the width of the low charge carrier lifetime region at the ingot top. The back-diffusion of impurities from the ingot top is suppressed by adding a small amount of pure aluminum into the silicon melt right at the end of the solidification. We study the aluminum gettering effect by instrumental neutron activation analysis (INAA) and Fei imaging. Furthermore, we present a model for aluminum gettering of Fe in the silicon ingot that is in agreement with literature data for aluminum gettering at lower temperature. The distribution of iron in the ingots with and without alumin…
On the Theory of Domain Structure of Disordered Ferroelectrics
2009
We present a comprehensive analysis of domain structure formation in ferroelectric phase of incipient ferroelectrics with off-center dipole impurities like KTaO 3 :Li, Nb,Na. Our analysis is carried out on the base of effective free energy of disordered ferroelectrics, derived by us earlier. This free energy permits to apply the standard approach to domain structure calculation. Using coupled system of Maxwell equations with those obtained by minimization of above free energy, we calculate the physical characteristics of domain structure as functions of impurity dipoles concentration n. Our theory can be easily generalized for arbitrary temperature and crystal shape including thin films.
Electronic Properties of Point Defects in Metals
1982
Recent progress in electronic structure and related properties of point defects in metals is reviewed. Topics discussed include transition metal impurities in a non-magnetic host, construction of potential energy surfaces from effective-medium theories, trapping of light interstitials, and pair potential in metals.