Search results for "quantum computer"
showing 10 items of 211 documents
Nonlinear optical Galton board
2007
We generalize the concept of optical Galton board (OGB), first proposed by Bouwmeester et al. {[}Phys. Rev. A \textbf{61}, 013410 (2000)], by introducing the possibility of nonlinear self--phase modulation on the wavefunction during the walker evolution. If the original Galton board illustrates classical diffusion, the OGB, which can be understood as a grid of Landau--Zener crossings, illustrates the influence of interference on diffusion, and is closely connected with the quantum walk. Our nonlinear generalization of the OGB shows new phenomena, the most striking of which is the formation of non-dispersive pulses in the field distribution (soliton--like structures). These exhibit a variety…
Resonant effects in a SQUID qubit subjected to nonadiabatic changes
2013
By quickly modifying the shape of the effective potential of a double SQUID flux qubit from a single-well to a double-well condition, we experimentally observe an anomalous behavior, namely an alternance of resonance peaks, in the probability to find the qubit in a given flux state. The occurrence of Landau-Zener transitions as well as resonant tunneling between degenerate levels in the two wells may be invoked to partially justify the experimental results. A quantum simulation of the time evolution of the system indeed suggests that the observed anomalous behavior can be imputable to quantum coherence effects. The interplay among all these mechanisms has a practical implication for quantum…
Quantum Computation with Generalized Binomial States in Cavity Quantum Electrodynamics
2008
We study universal quantum computation in the cavity quantum electrodynamics (CQED) framework exploiting two orthonormal two-photon generalized binomial states as qubit and dispersive interactions of Rydberg atoms with high-$Q$ cavities. We show that an arbitrary qubit state may be generated and that controlled-NOT and 1-qubit rotation gates can be realized via standard atom-cavity interactions.
Phase Locking between Two All-Optical Quantum Memories.
2020
Optical approaches to quantum computation require the creation of multi-mode photonic quantum states in a controlled fashion. Here we experimentally demonstrate phase locking of two all-optical quantum memories, based on a concatenated cavity system with phase reference beams, for the time-controlled release of two-mode entangled single-photon states. The release time for each mode can be independently determined. The generated states are characterized by two-mode optical homodyne tomography. Entanglement and nonclassicality are preserved for release-time differences up to 400 ns, confirmed by logarithmic negativities and Wigner-function negativities, respectively.
Measurement-induced optical Kerr interaction
2013
We present a method for implementing a weak optical Kerr interaction (single-mode Kerr Hamiltonian) in a measurement-based fashion using the common set of universal elementary interactions for continuous-variable quantum computation. Our scheme is a conceptually distinct alternative to the use of naturally occurring, weak Kerr nonlinearities or specially designed nonlinear media. Instead, we propose to exploit suitable offline prepared quartic ancilla states together with beam splitters, squeezers, and homodyne detectors. For perfect ancilla states and ideal operations, our decompositions for obtaining the measurement-based Kerr Hamiltonian lead to a realization with near-unit fidelity. Non…
Polarimetric measurements of single-photon geometric phases
2014
We report polarimetric measurements of geometric phases that are generated by evolving polarized photons along non-geodesic trajectories on the Poincar\'e sphere. The core of our polarimetric array consists of seven wave plates that are traversed by a single photon beam. With this array any SU(2) transformation can be realized. By exploiting the gauge invariance of geometric phases under U(1) local transformations, we nullify the dynamical contribution to the total phase, thereby making the latter coincide with the geometric phase. We demonstrate our arrangement to be insensitive to various sources of noise entering it. This makes the single-beam, polarimetric array a promising, versatile t…
Quantum walk with a time-dependent coin
2006
We introduce quantum walks with a time-dependent coin, and show how they include, as a particular case, the generalized quantum walk recently studied by Wojcik et al. {[}Phys. Rev. Lett. \textbf{93}, 180601(2004){]} which exhibits interesting dynamical localization and quasiperiodic dynamics. Our proposal allows for a much easier implementation of this particular rich dynamics than the original one. Moreover, it allows for an additional control on the walk, which can be used to compensate for phases appearing due to external interactions. To illustrate its feasibility, we discuss an example using an optical cavity. We also derive an approximated solution in the continuous limit (long--wavel…
Reversible and irreversible dynamics of a qubit interacting with a small environment
2006
We analyze the dynamics of a system qubit interacting by means a sequence of pairwise collisions with an environment consisting of just two qubits. We show that the density operator of the qubits approaches a common time averaged equilibrium state, characterized by large fluctuations, only for a random sequence of collisions. For a regular sequence of collisions the qubitstates of the system and of the reservoir undergo instantaneous periodic oscillations and do not relax to a common state. Furthermore we show that pure bipartite entanglement is developed only when at least two qubits are initially in the same purestate while otherwise also genuine multipartite entanglement builds up.
Fast SWAP gate by adiabatic passage
2005
We present a process for the construction of a SWAP gate which does not require a composition of elementary gates from a universal set. We propose to employ direct techniques adapted to the preparation of this specific gate. The mechanism, based on adiabatic passage, constitutes a decoherence-free method in the sense that spontaneous emission and cavity damping are avoided.
Hilbert Space Average Method and adiabatic quantum search
2009
6 pages, 1 figure.-- ISI article identifier:000262979000049.-- ArXiv pre-print avaible at:http://arxiv.org/abs/0810.1456