Search results for "quantum electrodynamic"

showing 10 items of 820 documents

Propagating single photons from an open cavity: Description from universal quantization

2022

Over the last decades, quantum optics has evolved from high quality factor cavities in the early experiments toward new cavity designs involving leaky modes. Despite very reliable models, in the concepts of cavity quantum electrodynamics, photon leakage is most of the time treated phenomenologically. Here, we take a different approach, and starting from first principles, we define an inside-outside representation which is derived from the original true-mode representation, in which one can determine effective Hamiltonian and Poynting vector. Contrary to the phenomenological model, they allow a full description of a leaking single photon produced in the cavity and propagating in free space. …

Quantum PhysicsdesignphotonPhysics::OpticsFOS: Physical sciencescavityopticsquantumqualityadiabaticquantum electrodynamicsquantizationQuantum Physics (quant-ph)[PHYS.QPHY] Physics [physics]/Quantum Physics [quant-ph]
researchProduct

Electromagnetic transition form factors of the Roper resonance in a phenomenological field theory

2014

We analyze the form factors of the electromagnetic nucleon-to-Roper-resonance transition in the framework of a low-energy phenomenological field theory. A systematic power-counting procedure is generated by applying the complex-mass scheme. Within this power counting we calculate the form factors to next-to-next-to-leading order and fit the results to empirical data.

PhysicsNuclear and High Energy PhysicsEmpirical dataTheoretical physicsRoper resonanceTransition (fiction)Quantum electrodynamicsEffective field theoryOrder (ring theory)Field theory (psychology)Nuclear theoryPower (physics)Physical Review C
researchProduct

Spacetime structure of an evaporating black hole in quantum gravity

2006

The impact of the leading quantum gravity effects on the dynamics of the Hawking evaporation process of a black hole is investigated. Its spacetime structure is described by a renormalization group improved Vaidya metric. Its event horizon, apparent horizon, and timelike limit surface are obtained taking the scale dependence of Newton's constant into account. The emergence of a quantum ergosphere is discussed. The final state of the evaporation process is a cold, Planck size remnant.

High Energy Physics - TheoryPhysicsNuclear and High Energy PhysicsEvent horizonAstrophysics::High Energy Astrophysical PhenomenaAstrophysics (astro-ph)FOS: Physical sciencesAstrophysicsPenrose processBlack holeGeneral Relativity and Quantum CosmologyMicro black holeHigh Energy Physics - Theory (hep-th)Apparent horizonQuantum mechanicsQuantum electrodynamicsVirtual black holeBlack hole thermodynamicsHawking radiationPhysical Review D
researchProduct

Dynamical Casimir-Polder force between an atom and a conducting wall

2008

The time-dependent Casimir-Polder force arising during the time evolution of an initially bare two-level atom, interacting with the radiation field and placed near a perfectly conducting wall, is considered. Initially the electromagnetic field is supposed to be in the vacuum state and the atom in its ground state. The analytical expression of the force as a function of time and atom-wall distance, is evaluated from the the time-dependent atom-field interaction energy. Physical features and limits of validity of the results are discussed in detail.

Electromagnetic fieldPhysicsQuantum PhysicsForce field (physics)quantum fluctuationsVacuum stateTime evolutionFOS: Physical sciencesInteraction energyquantum electrodynamicCasimir-Polder forceAtomic and Molecular Physics and OpticsCasimir effectClassical mechanicsAtomPhysics::Atomic and Molecular ClustersPhysics::Atomic PhysicsGround stateQuantum Physics (quant-ph)
researchProduct

Limits on the parameters of the equation of state for interacting dark energy

2010

Under the assumption that cold dark matter and dark energy interact with each other through a small coupling term, $Q$, we constrain the parameter space of the equation of state $w$ of those dark energy fields whose variation of the field since last scattering do not exceed Planck's mass. We use three parameterizations of $w$ and two different expressions for $Q$. Our work extends previous ones.

High Energy Physics - TheoryPhysicsNuclear and High Energy PhysicsParticle physicsEquation of stateCosmology and Nongalactic Astrophysics (astro-ph.CO)Hot dark matterScalar field dark matterFOS: Physical sciencesLambda-CDM modelAstrophysics::Cosmology and Extragalactic AstrophysicsGeneral Relativity and Quantum Cosmology (gr-qc)General Relativity and Quantum CosmologyThermodynamics of the universeHigh Energy Physics - Theory (hep-th)Quantum mechanicsQuantum electrodynamicsMixed dark matterWarm dark matterDark energyLight dark matterDark fluidAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

General Multipole Expansion of Polarization Observables in Deuteron Electrodisintegration

2002

Formal expressions are derived for the multipole expansion of the structure functions of a general polarization observable of exclusive electrodisintegration of the deuteron using a longitudinally polarized beam and/or an oriented target. This allows one to exhibit explicitly the angular dependence of the structure functions by expanding them in terms of the small rotation matrices $d^j_{m'm}(\theta)$, whose coefficients are given in terms of the electromagnetic multipole matrix elements. Furthermore, explicit expressions for the coefficients of the angular distributions of the differential cross section including multipoles up to $L_{max}=3$ are listed in tabular form.

PhysicsNuclear and High Energy PhysicsNuclear Theory010308 nuclear & particles physicsPolarization observablesHadronFOS: Physical sciencesObservableRotation matrixPolarization (waves)01 natural sciencesNuclear Theory (nucl-th)DeuteriumQuantum electrodynamics0103 physical sciencesNuclear fusion010306 general physicsMultipole expansion
researchProduct

Time-dependent unitary perturbation theory for intense laser-driven molecular orientation

2004

We apply a time-dependent perturbation theory based on unitary transformations combined with averaging techniques, on molecular orientation dynamics by ultrashort pulses. We test the validity and the accuracy of this approach on LiCl described within a rigid-rotor model and find that it is more accurate than other approximations. Furthermore, it is shown that a noticeable orientation can be achieved for experimentally standard short laser pulses of zero time average. In this case, we determine the dynamically relevant parameters by using the perturbative propagator, that is derived from this scheme, and we investigate the temperature effects on the molecular orientation dynamics.

PhysicsQuantum Physics[ PHYS.QPHY ] Physics [physics]/Quantum Physics [quant-ph]Dynamics (mechanics)Zero (complex analysis)FOS: Physical sciencesPropagator02 engineering and technology021001 nanoscience & nanotechnologyLaser01 natural sciencesUnitary stateAtomic and Molecular Physics and Opticslaw.inventionMolecular dynamics[PHYS.QPHY]Physics [physics]/Quantum Physics [quant-ph]lawOrientation (geometry)Quantum electrodynamics0103 physical sciencesPerturbation theory (quantum mechanics)Quantum Physics (quant-ph)010306 general physics0210 nano-technology
researchProduct

The su(2|1) Model of Electroweak Interactions and Its Connection to NC Geometry

2002

I review the su(2|1) model of electroweak interactions which is essentially based on the super Lie algebra su(2|1), thus incorporating both usual gauge fields and Higgs fields in one generalized Yang-Mills field. Special emphasis is put on the natural appearance of spontaneous symmetry breaking and other appealing features of the model like generation mixing. Also the connection of the model to noncommutative geometry is briefly discussed.

Theoretical physicsField (physics)Quantum electrodynamicsSpontaneous symmetry breakingHigh Energy Physics::PhenomenologyElectroweak interactionLie algebraHiggs bosonNoncommutative geometrySpecial unitary groupMathematicsConnection (mathematics)
researchProduct

Friedel Oscillations in Relativistic Nuclear Matter

1994

We calculate the low-momentum N-N effective potential obtained in the OBE approximation, inside a nuclear plasma at finite temperature, as described by the relativistic $ \sigma $-$ \omega $ model. We analyze the screening effects on the attractive part of the potential in the intermediate range as density or temperature increase. In the long range the potential shows Friedel-like oscillations instead of the usual exponential damping. These oscillations arise from the sharp edge of the Fermi surface and should be encountered in any realistic model of nuclear matter.

PhysicsFriedel oscillationsRange (particle radiation)Sigma modelNuclear TheoryNuclear TheoryGeneral Physics and AstronomyFOS: Physical sciencesFermi surfacePlasmaNuclear matterOmegaExponential functionNuclear Theory (nucl-th)Quantum electrodynamicsFísica nuclear
researchProduct

In-medium pi-pi Correlation Induced by Partial Restoration of Chiral Symmetry

2000

We show that both the linear and the non-linear chiral models give an enhancement of the pi-pi cross section near the 2pi threshold in the scalar-iso-scalar (I=J=0) channel in nuclear matter. The reduction of the chiral condensate, i.e., the partial chiral restoration in nuclear matter, is responsible for the enhancement in both cases. We extract an effective 4pi-nucleon vertex which is responsible for the enhancement but has not been considered in the non-liear models for in-medium pi-pi interaction. Relation of this vertex and a next-to-leading order terms in the heavy-baryon chiral lagrangian, L_piN^(2), is also discussed.

Chiral anomalyPhysicsNuclear and High Energy PhysicsChiral symmetryChiral perturbation theoryNuclear TheoryScatteringHigh Energy Physics::PhenomenologyFOS: Physical sciencesNuclear matterNuclear Theory (nucl-th)Formalism (philosophy of mathematics)symbols.namesakeHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)Quantum electrodynamicssymbolsChiral symmetry breakingNuclear ExperimentLagrangianMathematical physics
researchProduct