Search results for "quantum gravity"
showing 10 items of 126 documents
Coherent states: a contemporary panorama
2012
Coherent states (CS) of the harmonic oscillator (also called canonical CS) were introduced in 1926 by Schr?dinger in answer to a remark by Lorentz on the classical interpretation of the wave function. They were rediscovered in the early 1960s, first (somewhat implicitly) by Klauder in the context of a novel representation of quantum states, then by Glauber and Sudarshan for the description of coherence in lasers. Since then, CS have grown into an extremely rich domain that pervades almost every corner of physics and have also led to the development of several flourishing topics in mathematics. Along the way, a number of review articles have appeared in the literature, devoted to CS, notably…
Quantum bubble dynamics in the presence of gravity
1991
Abstract The dynamics of spherical quantum bubbles in 3+1 dimensions is governed by a Klein-Gordon-type equation which simulates the quantum mechanical motion of a relativistic point particle in 1+1 dimensions. This dimensional reduction is especially clear in the minisuperspace formulation first used in quantum cosmology and adapted here to quantum bubble dynamics. The payoff of this formulation is the discovery of the gravitational analogue of the Klein effect, namely the crossing of positive and negative energy levels of the particle spectrum induced by an external gravitational field. This phenomenon gives rise to a finite probability that a vacuum bubble might tunnel from an initial bo…
Z2-Regge versus standard Regge calculus in two dimensions
1999
We consider two versions of quantum Regge calculus: the standard Regge calculus where the quadratic link lengths of the simplicial manifold vary continuously and the ${Z}_{2}$ Regge model where they are restricted to two possible values. The goal is to determine whether the computationally more easily accessible ${Z}_{2}$ model still retains the universal characteristics of standard Regge theory in two dimensions. In order to compare observables such as the average curvature or Liouville field susceptibility, we use in both models the same functional integration measure, which is chosen to render the ${Z}_{2}$ Regge model particularly simple. Expectation values are computed numerically and …
Entropy signature of the running cosmological constant
2007
Renormalization group (RG) improved cosmologies based upon a RG trajectory of Quantum Einstein Gravity (QEG) with realistic parameter values are investigated using a system of cosmological evolution equations which allows for an unrestricted energy exchange between the vacuum and the matter sector. It is demonstrated that the scale dependence of the gravitational parameters, the cosmological constant in particular, leads to an entropy production in the matter system. The picture emerges that the Universe started out from a state of vanishing entropy, and that the radiation entropy observed today is essentially due to the coarse graining (RG flow) in the quantum gravity sector which is relat…
RG flows of Quantum Einstein Gravity in the linear-geometric approximation
2014
We construct a novel Wetterich-type functional renormalization group equation for gravity which encodes the gravitational degrees of freedom in terms of gauge-invariant fluctuation fields. Applying a linear-geometric approximation the structure of the new flow equation is considerably simpler than the standard Quantum Einstein Gravity construction since only transverse-traceless and trace part of the metric fluctuations propagate in loops. The geometric flow reproduces the phase-diagram of the Einstein-Hilbert truncation including the non-Gaussian fixed point essential for Asymptotic Safety. Extending the analysis to the polynomial $f(R)$-approximation establishes that this fixed point come…
Statistical Thermodynamics of Polymer Quantum Systems
2011
Polymer quantum systems are mechanical models quantized similarly as loop quantum gravity. It is actually in quantizing gravity that the polymer term holds proper as the quantum geometry excitations yield a reminiscent of a polymer material. In such an approach both non-singular cosmological models and a microscopic basis for the entropy of some black holes have arisen. Also important physical questions for these systems involve thermodynamics. With this motivation, in this work, we study the statistical thermody- namics of two one dimensional polymer quantum systems: an ensemble of oscillators that describe a solid and a bunch of non-interacting particles in a box, which thus form an ideal…
Black hole state counting in loop quantum gravity: a number-theoretical approach
2008
4 pages, 1 figure.-- PACS nrs.: 04.70.Dy, 04.60.Pp.-- ArXiv pre-print available at: http://arxiv.org/abs/0802.4077
Do we Observe Quantum Gravity Effects at Galactic Scales?
2005
The nonperturbative renormalization group flow of Quantum Einstein Gravity (QEG) is reviewed. It is argued that there could be strong renormalization effects at large distances, in particular a scale dependent Newton constant, which mimic the presence of dark matter at galactic and cosmological scales.
Dynamics for a simple graph using the U(N) framework for loop quantum gravity
2012
The implementation of the dynamics in loop quantum gravity (LQG) is still an open problem. Here, we discuss a tentative dynamics for the simplest class of graphs in LQG: Two vertices linked with an arbitrary number of edges. We find an interesting global U(N) symmetry in this model that selects the homogeneous/isotropic sector. Then, we propose a quantum Hamiltonian operator for this reduced sector. Finally, we introduce the spinor representation for LQG in order to propose a classical effective dynamics for this model.
Is There a C-Function in 4D Quantum Einstein Gravity?
2016
We describe a functional renormalization group-based method to search for ‘C-like’ functions with properties similar to that in 2D conformal field theory. It exploits the mode counting properties of the effective average action and is particularly suited for theories including quantized gravity. The viability of the approach is demonstrated explicitly in a truncation of 4 dimensional Quantum Einstein Gravity, i.e. asymptotically safe metric gravity.