Search results for "quantum group"

showing 10 items of 32 documents

Banach Partial *-Algebras and Quantum Models

2007

C*-algebras are, as known, the basic mathematical ingredient of the Haag- Kastler (Haag and Kastler 1964) algebraic approach to quantum systems, with infinitely many degrees of freedom. The usual procedure starts, in fact, with associating to each bounded region V of the configuration space of the system the C*-algebra AV of local observables in V. The uniform completion A of the algebra generated by the AV ’s is then considered as the C*-algebra of observables of the system

Quadratic algebraDiscrete mathematicsPure mathematicsPartial traceOperator algebraMathematics::Operator AlgebrasQuantum groupSubalgebraAlgebra representationCCR and CAR algebrasC*-algebraMathematics
researchProduct

On a possible origin of quantum groups

1991

A Poisson bracket structure having the commutation relations of the quantum group SLq(2) is quantized by means of the Moyal star-product on C∞(ℝ2), showing that quantum groups are not exactly quantizations, but require a quantization (with another parameter) in the background. The resulting associative algebra is a strongly invariant nonlinear star-product realization of the q-algebra Uq(sl(2)). The principle of strong invariance (the requirement that the star-commutator is star-expressed, up to a phase, by the same function as its classical limit) implies essentially the uniqueness of the commutation relations of Uq(sl(2)).

Quantization (physics)Poisson bracketQuantum groupQuantum mechanicsAssociative algebraStatistical and Nonlinear PhysicsUniquenessInvariant (physics)QuantumMathematical PhysicsClassical limitMathematical physicsMathematicsLetters in Mathematical Physics
researchProduct

Algebraic quantization on a group and nonabelian constraints

1989

A generalization of a previous group manifold quantization formalism is proposed. In the new version the differential structure is circumvented, so that discrete transformations in the group are allowed, and a nonabelian group replaces the ordinary (central)U(1) subgroup of the Heisenberg-Weyl-like quantum group. As an example of the former we obtain the wave functions associated with the system of two identical particles, and the latter modification is used to account for the Virasoro constraints in string theory.

Quantum group58D30Differential structureStatistical and Nonlinear PhysicsString theoryAlgebra58F0622E7081D07Operator algebraUnitary group81E30Algebraic numberQuantum field theoryMathematical PhysicsIdentical particlesMathematicsCommunications in Mathematical Physics
researchProduct

Quantum groups and quantum complete integrability: Theory and experiment

2008

Quantum groupQuantum mechanicsBraid groupRydberg atomQuantum operationQuantum dissipationHopf algebraQuantumMicrowave cavityMathematics
researchProduct

Chen’s iterated integral represents the operator product expansion

1999

The recently discovered formalism underlying renormalization theory, the Hopf algebra of rooted trees, allows to generalize Chen’s lemma. In its generalized form it describes the change of a scale in Green functions, and hence relates to the operator product expansion. Hand in hand with this generalization goes the generalization of the ordinary factorial n! to the tree factorial t. Various identities on tree-factorials are derived which clarify the relation between Connes-Moscovici weights and Quantum Field Theory.

RenormalizationAlgebraFactorialQuantum groupGeneral MathematicsGeneral Physics and AstronomyOperator product expansionRenormalization groupQuantum field theoryHopf algebraCohomologyMathematicsAdvances in Theoretical and Mathematical Physics
researchProduct

Jerarquies de models sigma: aplicacions a teories de Supergravetat i a teories conformes

2012

207 páginas. Tesis Doctoral del Departamento de Física Teórica, de la Universidad de Valencia. Fecha de lectura: 5 octubre 2012.

S-expansionscoset spacesquantum groupsUNESCO::FÍSICA::Física Teórica:MATEMÁTICAS::Álgebra::Grupos generalidades [UNESCO]UNESCO::MATEMÁTICAS::Álgebra::Grupos generalidades:FÍSICA::Física Teórica [UNESCO]quantum groups; coset spaces; semigroups; S-expansionssemigroups
researchProduct

Module categories of finite Hopf algebroids, and self-duality

2017

International audience; We characterize the module categories of suitably finite Hopf algebroids (more precisely, $X_R$-bialgebras in the sense of Takeuchi (1977) that are Hopf and finite in the sense of a work by the author (2000)) as those $k$-linear abelian monoidal categories that are module categories of some algebra, and admit dual objects for "sufficiently many" of their objects. Then we proceed to show that in many situations the Hopf algebroid can be chosen to be self-dual, in a sense to be made precise. This generalizes a result of Pfeiffer for pivotal fusion categories and the weak Hopf algebras associated to them.

Self-duality[ MATH ] Mathematics [math]Finite tensor categoryGeneral MathematicsDuality (mathematics)Representation theory of Hopf algebrasBimodulesQuasitriangular Hopf algebra01 natural sciencesMonoidal CategoriesMathematics::Category TheoryMathematics::Quantum Algebra0103 physical sciencesRings0101 mathematicsAlgebra over a fieldAbelian group[MATH]Mathematics [math]Fusion categoryHopf algebroidMSC: Primary 16T99 18D10SubfactorsMathematicsQuantum groupApplied Mathematics010102 general mathematicsMathematics::Rings and AlgebrasTensor CategoriesTheorem16. Peace & justiceHopf algebraDual (category theory)Algebra010307 mathematical physicsWeak Hopf algebra
researchProduct

Lévy–Khintchine decompositions for generating functionals on algebras associated to universal compact quantum groups

2018

We study the first and second cohomology groups of the $^*$-algebras of the universal unitary and orthogonal quantum groups $U_F^+$ and $O_F^+$. This provides valuable information for constructing and classifying L\'evy processes on these quantum groups, as pointed out by Sch\"urmann. In the case when all eigenvalues of $F^*F$ are distinct, we show that these $^*$-algebras have the properties (GC), (NC), and (LK) introduced by Sch\"urmann and studied recently by Franz, Gerhold and Thom. In the degenerate case $F=I_d$, we show that they do not have any of these properties. We also compute the second cohomology group of $U_d^+$ with trivial coefficients -- $H^2(U_d^+,{}_\epsilon\Bbb{C}_\epsil…

Statistics and ProbabilityPure mathematicsQuantum groupComputer Science::Information RetrievalApplied Mathematics010102 general mathematicsAstrophysics::Instrumentation and Methods for AstrophysicsComputer Science::Computation and Language (Computational Linguistics and Natural Language and Speech Processing)Statistical and Nonlinear PhysicsHopf algebra[MATH.MATH-FA]Mathematics [math]/Functional Analysis [math.FA]01 natural sciencesUnitary stateCohomologyMathematics::K-Theory and HomologyMathematics - Quantum Algebra0103 physical sciencesComputer Science::General Literature16T20 (Primary) 16T05 (Secondary)010307 mathematical physics0101 mathematicsQuantumMathematical PhysicsComputingMilieux_MISCELLANEOUSMathematics
researchProduct

Topological Hopf algebras, quantum groups and deformation quantization

2003

After a presentation of the context and a brief reminder of deformation quantization, we indicate how the introduction of natural topological vector space topologies on Hopf algebras associated with Poisson Lie groups, Lie bialgebras and their doubles explains their dualities and provides a comprehensive framework. Relations with deformation quantization and applications to the deformation quantization of symmetric spaces are described

[ MATH.MATH-QA ] Mathematics [math]/Quantum Algebra [math.QA]quantum groups[ MATH.MATH-MP ] Mathematics [math]/Mathematical Physics [math-ph]FOS: Physical sciences[ MATH.MATH-SG ] Mathematics [math]/Symplectic Geometry [math.SG]topological vector spacesMathematical Physics (math-ph)[MATH.MATH-SG]Mathematics [math]/Symplectic Geometry [math.SG]deformation quantizationMathematics - Symplectic GeometryHopf algebras54C40 14E20 (primary) 46E25 20C20 (secondary)[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph]Mathematics::Quantum AlgebraMathematics - Quantum AlgebraFOS: Mathematics[MATH.MATH-QA]Mathematics [math]/Quantum Algebra [math.QA]Quantum Algebra (math.QA)Symplectic Geometry (math.SG)Mathematical Physics
researchProduct

A possible quantic motivation of the structure of quantum group: continuation

2012

Motivated by Quantum Mechanics considerations, we expose some cross product constructions on a groupoid structure. Furthermore, critical remarks are made on some basic formal aspects of the Hopf algebra structure.

[MATH.MATH-QA] Mathematics [math]/Quantum Algebra [math.QA][PHYS.QPHY]Physics [physics]/Quantum Physics [quant-ph]groupoid semigroupoid cross product quantum group[MATH.MATH-RA]Mathematics [math]/Rings and Algebras [math.RA][MATH.MATH-RA] Mathematics [math]/Rings and Algebras [math.RA][MATH.MATH-QA]Mathematics [math]/Quantum Algebra [math.QA][PHYS.QPHY] Physics [physics]/Quantum Physics [quant-ph]ComputingMilieux_MISCELLANEOUS
researchProduct